Articles | Volume 9, issue 8
Biogeosciences, 9, 2831–2846, 2012
Biogeosciences, 9, 2831–2846, 2012

Research article 01 Aug 2012

Research article | 01 Aug 2012

Regional differences in modelled net production and shallow remineralization in the North Atlantic subtropical gyre

B. Fernández-Castro1, L. Anderson2, E. Marañón1, S. Neuer3, B. Ausín1, M. González-Dávila4, J. M. Santana-Casiano4, A. Cianca4, R. Santana4, O. LLinás5, M. J. Rueda6, and B. Mouriño-Carballido1 B. Fernández-Castro et al.
  • 1Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Pontevedra, 36200, Spain
  • 2Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1541, USA
  • 3School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
  • 4Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Tafira s/n., 35017 Las Palmas de Gran Canaria, Spain
  • 5Plataforma Oceánica de Canarias (PLOCAN), Crta. de Taliarte s/n, P.O. Box 413, 35200 Telde, Gran Canaria, Spain
  • 6Instituto Canario de Ciencias Marinas, Gobierno de Canarias, Telde, Gran Canaria, Spain

Abstract. We used 5-yr concomitant data of tracer distribution from the BATS (Bermuda Time-series Study) and ESTOC (European Station for Time-Series in the Ocean, Canary Islands) sites to build a 1-D tracer model conservation including horizontal advection, and then compute net production and shallow remineralization rates for both sites. Our main goal was to verify if differences in these rates are consistent with the lower export rates of particulate organic carbon observed at ESTOC. Net production rates computed below the mixed layer to 110 m from April to December for oxygen, dissolved inorganic carbon and nitrate at BATS (1.34±0.79 mol O2 m−2, −1.73±0.52 mol C m−2 and −125±36 mmol N m−2) were slightly higher for oxygen and carbon compared to ESTOC (1.03±0.62 mol O2 m−2, −1.42±0.30 mol C m−2 and −213±56 mmol N m−2), although the differences were not statistically significant. Shallow remineralization rates between 110 and 250 m computed at ESTOC (−3.9±1.0 mol O2 m−2, 1.53±0.43 mol C m−2 and 38±155 mmol N m−2) were statistically higher for oxygen compared to BATS (−1.81±0.37 mol O2 m−2, 1.52±0.30 mol C m−2 and 147±43 mmol N m−2). The lateral advective flux divergence of tracers, which was more significant at ESTOC, was responsible for the differences in estimated oxygen remineralization rates between both stations. According to these results, the differences in net production and shallow remineralization cannot fully explain the differences in the flux of sinking organic matter observed between both stations, suggesting an additional consumption of non-sinking organic matter at ESTOC.

Final-revised paper