Articles | Volume 10, issue 3
https://doi.org/10.5194/bg-10-1471-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-1471-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community
N. Aberle
Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade, 27498 Helgoland, Germany
K. G. Schulz
GEOMAR – Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel, Germany
A. Stuhr
GEOMAR – Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel, Germany
A. M. Malzahn
Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade, 27498 Helgoland, Germany
Sultan Qaboos University, College of Agricultural and Marine Sciences, Dept. of Marine Sciences and Fisheries, P.O. Box 34, 123 Al-Khoud, Sultanate of Oman
A. Ludwig
GEOMAR – Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel, Germany
U. Riebesell
GEOMAR – Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel, Germany
Viewed
Total article views: 5,476 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 20 Sep 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,314 | 1,958 | 204 | 5,476 | 221 | 145 |
- HTML: 3,314
- PDF: 1,958
- XML: 204
- Total: 5,476
- BibTeX: 221
- EndNote: 145
Total article views: 4,561 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Mar 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,956 | 1,430 | 175 | 4,561 | 186 | 140 |
- HTML: 2,956
- PDF: 1,430
- XML: 175
- Total: 4,561
- BibTeX: 186
- EndNote: 140
Total article views: 915 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 20 Sep 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
358 | 528 | 29 | 915 | 35 | 5 |
- HTML: 358
- PDF: 528
- XML: 29
- Total: 915
- BibTeX: 35
- EndNote: 5
Cited
50 citations as recorded by crossref.
- Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom S. Menden-Deuer et al. 10.7717/peerj.5264
- Ocean acidification induces distinct metabolic responses in subtropical zooplankton under oligotrophic conditions and after simulated upwelling N. Osma et al. 10.1016/j.scitotenv.2021.152252
- Insensitivities of a subtropical productive coastal plankton community and trophic transfer to ocean acidification: Results from a microcosm study T. Wang et al. 10.1016/j.marpolbul.2019.03.002
- Impacts of Temperature, CO2, and Salinity on Phytoplankton Community Composition in the Western Arctic Ocean K. Sugie et al. 10.3389/fmars.2019.00821
- Mechanisms driving Antarctic microbial community responses to ocean acidification: a network modelling approach R. Subramaniam et al. 10.1007/s00300-016-1989-8
- Impact of ocean acidification on microzooplankton grazing dynamics W. Shi et al. 10.3389/fmars.2024.1414932
- Long photoperiods sustain high pH in Arctic kelp forests D. Krause-Jensen et al. 10.1126/sciadv.1501938
- An integrated multiple driver mesocosm experiment reveals the effect of global change on planktonic food web structure H. Moreno et al. 10.1038/s42003-022-03105-5
- Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review T. Yu & Y. Chen 10.1016/j.scitotenv.2018.11.301
- Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific R. Haigh et al. 10.1371/journal.pone.0117533
- High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community H. Horn et al. 10.1007/s00227-020-03683-0
- Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community A. Wulff et al. 10.1007/s00227-018-3321-3
- Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak J. Langer et al. 10.1371/journal.pone.0175808
- Direct and indirect effects of near-future pCO2 levels on zooplankton dynamics C. Meunier et al. 10.1071/MF15296
- Analyzing the Impacts of Elevated-CO2 Levels on the Development of a Subtropical Zooplankton Community During Oligotrophic Conditions and Simulated Upwelling M. Algueró-Muñiz et al. 10.3389/fmars.2019.00061
- Connecting alveolate cell biology with trophic ecology in the marine plankton using the ciliateFavellaas a model M. Echevarria et al. 10.1111/1574-6941.12382
- Phytoplankton Do Not Produce Carbon‐Rich Organic Matter in High CO2 Oceans J. Kim et al. 10.1029/2017GL075865
- Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency A. Calbet et al. 10.1371/journal.pone.0094388
- Ciliate and mesozooplankton community response to increasing CO<sub>2</sub> levels in the Baltic Sea: insights from a large-scale mesocosm experiment S. Lischka et al. 10.5194/bg-14-447-2017
- Interaction effects of zooplankton and CO2 on phytoplankton communities and the deep chlorophyll maximum C. Paquette & B. Beisner 10.1111/fwb.13063
- The craving for phosphorus in heterotrophic dinoflagellates and its potential implications for biogeochemical cycles C. Meunier et al. 10.1002/lno.10807
- Ocean acidification changes the structure of an Antarctic coastal protistan community A. Hancock et al. 10.5194/bg-15-2393-2018
- Enhanced CO2 concentrations change the structure of Antarctic marine microbial communities A. Davidson et al. 10.3354/meps11742
- Aragonite saturation state in a continental shelf (Gulf of Cádiz, SW Iberian Peninsula): Evidences of acidification in the coastal area D. Jiménez-López et al. 10.1016/j.scitotenv.2021.147858
- Ocean acidification and food availability impacts on the metabolism and grazing in a cosmopolitan herbivorous protist Oxyrrhis marina N. Wang & K. Gao 10.3389/fmars.2024.1371296
- Plankton responses to ocean acidification: The role of nutrient limitation S. Alvarez-Fernandez et al. 10.1016/j.pocean.2018.04.006
- Alterations in microbial community composition with increasing <i>f</i>CO<sub>2</sub>: a mesocosm study in the eastern Baltic Sea K. Crawfurd et al. 10.5194/bg-14-3831-2017
- Elevated pCO2 Impedes Succession of Phytoplankton Community From Diatoms to Dinoflagellates Along With Increased Abundance of Viruses and Bacteria R. Huang et al. 10.3389/fmars.2021.642208
- Impact of elevated pH on succession in the Arctic spring bloom K. Riisgaard et al. 10.3354/meps11296
- Increasing CO2 changes community composition of pico- and nano-sized protists and prokaryotes at a coastal Antarctic site P. Thomson et al. 10.3354/meps11803
- Aragonite saturation state in a tropical coastal embayment dominated by phytoplankton blooms (Guanabara Bay – Brazil) L. Cotovicz et al. 10.1016/j.marpolbul.2017.10.064
- Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment M. Moustaka-Gouni et al. 10.1016/j.protis.2016.06.004
- Global change alters coastal plankton food webs by promoting the microbial loop: An inverse modelling and network analysis approach on a mesocosm experiment J. Di Pane et al. 10.1016/j.scitotenv.2024.171272
- Copepod response to ocean acidification in a low nutrient-low chlorophyll environment in the NW Mediterranean Sea S. Zervoudaki et al. 10.1016/j.ecss.2016.06.030
- Ciliates as bioindicators of CO2 in soil R. Gabilondo et al. 10.1016/j.ecolind.2017.11.060
- Effects of high CO2 and warming on a Baltic Sea microzooplankton community H. Horn et al. 10.1093/icesjms/fsv198
- Microzooplankton grazing responds to simulated ocean acidification indirectly through changes in prey cellular characteristics M. Olson et al. 10.3354/meps12716
- Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates S. Deppeler et al. 10.5194/bg-17-4153-2020
- How are the impacts of multiple anthropogenic drivers considered in marine ecosystem service research? A systematic literature review L. Solé Figueras et al. 10.1111/1365-2664.14625
- Elevated CO2 does not exacerbate nutritional stress in larvae of a Pacific flatfish T. Hurst et al. 10.1111/fog.12195
- Low CO2 Sensitivity of Microzooplankton Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm Study H. Horn et al. 10.1371/journal.pone.0165800
- Microzooplankton Communities in a Changing Ocean: A Risk Assessment M. López-Abbate 10.3390/d13020082
- Ocean acidification impacts on biomass and fatty acid composition of a post-bloom marine plankton community I. Dörner et al. 10.3354/meps13390
- Long-term changes on estuarine ciliates linked with modifications on wind patterns and water turbidity M. López-Abbate et al. 10.1016/j.marenvres.2018.12.001
- Spatial and seasonal variations of dinoflagellates and ciliates in the Kongsfjorden, Svalbard J. Bhaskar et al. 10.1111/maec.12588
- Effect of elevated CO<sub>2</sub> on the dynamics of particle-attached and free-living bacterioplankton communities in an Arctic fjord M. Sperling et al. 10.5194/bg-10-181-2013
- Effect of increased <i>p</i>CO<sub>2</sub> on the planktonic metabolic balance during a mesocosm experiment in an Arctic fjord T. Tanaka et al. 10.5194/bg-10-315-2013
- Mesozooplankton community development at elevated CO<sub>2</sub> concentrations: results from a mesocosm experiment in an Arctic fjord B. Niehoff et al. 10.5194/bg-10-1391-2013
- Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide K. Schulz et al. 10.5194/bg-10-161-2013
- Arctic microbial community dynamics influenced by elevated CO<sub>2</sub> levels C. Brussaard et al. 10.5194/bg-10-719-2013
45 citations as recorded by crossref.
- Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom S. Menden-Deuer et al. 10.7717/peerj.5264
- Ocean acidification induces distinct metabolic responses in subtropical zooplankton under oligotrophic conditions and after simulated upwelling N. Osma et al. 10.1016/j.scitotenv.2021.152252
- Insensitivities of a subtropical productive coastal plankton community and trophic transfer to ocean acidification: Results from a microcosm study T. Wang et al. 10.1016/j.marpolbul.2019.03.002
- Impacts of Temperature, CO2, and Salinity on Phytoplankton Community Composition in the Western Arctic Ocean K. Sugie et al. 10.3389/fmars.2019.00821
- Mechanisms driving Antarctic microbial community responses to ocean acidification: a network modelling approach R. Subramaniam et al. 10.1007/s00300-016-1989-8
- Impact of ocean acidification on microzooplankton grazing dynamics W. Shi et al. 10.3389/fmars.2024.1414932
- Long photoperiods sustain high pH in Arctic kelp forests D. Krause-Jensen et al. 10.1126/sciadv.1501938
- An integrated multiple driver mesocosm experiment reveals the effect of global change on planktonic food web structure H. Moreno et al. 10.1038/s42003-022-03105-5
- Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review T. Yu & Y. Chen 10.1016/j.scitotenv.2018.11.301
- Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific R. Haigh et al. 10.1371/journal.pone.0117533
- High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community H. Horn et al. 10.1007/s00227-020-03683-0
- Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community A. Wulff et al. 10.1007/s00227-018-3321-3
- Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak J. Langer et al. 10.1371/journal.pone.0175808
- Direct and indirect effects of near-future pCO2 levels on zooplankton dynamics C. Meunier et al. 10.1071/MF15296
- Analyzing the Impacts of Elevated-CO2 Levels on the Development of a Subtropical Zooplankton Community During Oligotrophic Conditions and Simulated Upwelling M. Algueró-Muñiz et al. 10.3389/fmars.2019.00061
- Connecting alveolate cell biology with trophic ecology in the marine plankton using the ciliateFavellaas a model M. Echevarria et al. 10.1111/1574-6941.12382
- Phytoplankton Do Not Produce Carbon‐Rich Organic Matter in High CO2 Oceans J. Kim et al. 10.1029/2017GL075865
- Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency A. Calbet et al. 10.1371/journal.pone.0094388
- Ciliate and mesozooplankton community response to increasing CO<sub>2</sub> levels in the Baltic Sea: insights from a large-scale mesocosm experiment S. Lischka et al. 10.5194/bg-14-447-2017
- Interaction effects of zooplankton and CO2 on phytoplankton communities and the deep chlorophyll maximum C. Paquette & B. Beisner 10.1111/fwb.13063
- The craving for phosphorus in heterotrophic dinoflagellates and its potential implications for biogeochemical cycles C. Meunier et al. 10.1002/lno.10807
- Ocean acidification changes the structure of an Antarctic coastal protistan community A. Hancock et al. 10.5194/bg-15-2393-2018
- Enhanced CO2 concentrations change the structure of Antarctic marine microbial communities A. Davidson et al. 10.3354/meps11742
- Aragonite saturation state in a continental shelf (Gulf of Cádiz, SW Iberian Peninsula): Evidences of acidification in the coastal area D. Jiménez-López et al. 10.1016/j.scitotenv.2021.147858
- Ocean acidification and food availability impacts on the metabolism and grazing in a cosmopolitan herbivorous protist Oxyrrhis marina N. Wang & K. Gao 10.3389/fmars.2024.1371296
- Plankton responses to ocean acidification: The role of nutrient limitation S. Alvarez-Fernandez et al. 10.1016/j.pocean.2018.04.006
- Alterations in microbial community composition with increasing <i>f</i>CO<sub>2</sub>: a mesocosm study in the eastern Baltic Sea K. Crawfurd et al. 10.5194/bg-14-3831-2017
- Elevated pCO2 Impedes Succession of Phytoplankton Community From Diatoms to Dinoflagellates Along With Increased Abundance of Viruses and Bacteria R. Huang et al. 10.3389/fmars.2021.642208
- Impact of elevated pH on succession in the Arctic spring bloom K. Riisgaard et al. 10.3354/meps11296
- Increasing CO2 changes community composition of pico- and nano-sized protists and prokaryotes at a coastal Antarctic site P. Thomson et al. 10.3354/meps11803
- Aragonite saturation state in a tropical coastal embayment dominated by phytoplankton blooms (Guanabara Bay – Brazil) L. Cotovicz et al. 10.1016/j.marpolbul.2017.10.064
- Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment M. Moustaka-Gouni et al. 10.1016/j.protis.2016.06.004
- Global change alters coastal plankton food webs by promoting the microbial loop: An inverse modelling and network analysis approach on a mesocosm experiment J. Di Pane et al. 10.1016/j.scitotenv.2024.171272
- Copepod response to ocean acidification in a low nutrient-low chlorophyll environment in the NW Mediterranean Sea S. Zervoudaki et al. 10.1016/j.ecss.2016.06.030
- Ciliates as bioindicators of CO2 in soil R. Gabilondo et al. 10.1016/j.ecolind.2017.11.060
- Effects of high CO2 and warming on a Baltic Sea microzooplankton community H. Horn et al. 10.1093/icesjms/fsv198
- Microzooplankton grazing responds to simulated ocean acidification indirectly through changes in prey cellular characteristics M. Olson et al. 10.3354/meps12716
- Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates S. Deppeler et al. 10.5194/bg-17-4153-2020
- How are the impacts of multiple anthropogenic drivers considered in marine ecosystem service research? A systematic literature review L. Solé Figueras et al. 10.1111/1365-2664.14625
- Elevated CO2 does not exacerbate nutritional stress in larvae of a Pacific flatfish T. Hurst et al. 10.1111/fog.12195
- Low CO2 Sensitivity of Microzooplankton Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm Study H. Horn et al. 10.1371/journal.pone.0165800
- Microzooplankton Communities in a Changing Ocean: A Risk Assessment M. López-Abbate 10.3390/d13020082
- Ocean acidification impacts on biomass and fatty acid composition of a post-bloom marine plankton community I. Dörner et al. 10.3354/meps13390
- Long-term changes on estuarine ciliates linked with modifications on wind patterns and water turbidity M. López-Abbate et al. 10.1016/j.marenvres.2018.12.001
- Spatial and seasonal variations of dinoflagellates and ciliates in the Kongsfjorden, Svalbard J. Bhaskar et al. 10.1111/maec.12588
5 citations as recorded by crossref.
- Effect of elevated CO<sub>2</sub> on the dynamics of particle-attached and free-living bacterioplankton communities in an Arctic fjord M. Sperling et al. 10.5194/bg-10-181-2013
- Effect of increased <i>p</i>CO<sub>2</sub> on the planktonic metabolic balance during a mesocosm experiment in an Arctic fjord T. Tanaka et al. 10.5194/bg-10-315-2013
- Mesozooplankton community development at elevated CO<sub>2</sub> concentrations: results from a mesocosm experiment in an Arctic fjord B. Niehoff et al. 10.5194/bg-10-1391-2013
- Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide K. Schulz et al. 10.5194/bg-10-161-2013
- Arctic microbial community dynamics influenced by elevated CO<sub>2</sub> levels C. Brussaard et al. 10.5194/bg-10-719-2013
Saved (final revised paper)
Saved (preprint)
Latest update: 18 Jan 2025
Altmetrics
Final-revised paper
Preprint