Articles | Volume 10, issue 6
https://doi.org/10.5194/bg-10-3997-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-3997-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Photosynthate translocation increases in response to low seawater pH in a coral–dinoflagellate symbiosis
P. Tremblay
LEA CSM-CNRS "BIOSENSIB", 98000, Monaco
present address: Département de biologie, chimie et géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski QC, G5L 3A1, Canada
Centre Scientifique de Monaco, Avenue St-Martin, 98000, Monaco
M. Fine
The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
The Interuniversity Institute for Marine Science in Eilat, P.O. Box 469, Eilat 88103, Israel
J. F. Maguer
LEMAR – UMR6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, Plouzané 29280, France
R. Grover
LEA CSM-CNRS "BIOSENSIB", 98000, Monaco
Centre Scientifique de Monaco, Avenue St-Martin, 98000, Monaco
C. Ferrier-Pagès
LEA CSM-CNRS "BIOSENSIB", 98000, Monaco
Centre Scientifique de Monaco, Avenue St-Martin, 98000, Monaco
Viewed
Total article views: 3,819 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,090 | 1,584 | 145 | 3,819 | 131 | 107 |
- HTML: 2,090
- PDF: 1,584
- XML: 145
- Total: 3,819
- BibTeX: 131
- EndNote: 107
Total article views: 2,848 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Jun 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,653 | 1,091 | 104 | 2,848 | 120 | 104 |
- HTML: 1,653
- PDF: 1,091
- XML: 104
- Total: 2,848
- BibTeX: 120
- EndNote: 104
Total article views: 971 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
437 | 493 | 41 | 971 | 11 | 3 |
- HTML: 437
- PDF: 493
- XML: 41
- Total: 971
- BibTeX: 11
- EndNote: 3
Cited
31 citations as recorded by crossref.
- Inorganic carbon is scarce for symbionts in scleractinian corals A. Tansik et al. 10.1002/lno.10550
- Effects of Temperature and pCO2 on Population Regulation of Symbiodinium spp. in a Tropical Reef Coral G. Baghdasarian et al. 10.1086/692718
- Lesion recovery of two scleractinian corals under low pH conditions: Implications for restoration efforts E. Hall et al. 10.1016/j.marpolbul.2015.08.030
- Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms J. Helgoe et al. 10.1111/brv.13042
- Nutrient Availability and Metabolism Affect the Stability of Coral–Symbiodiniaceae Symbioses L. Morris et al. 10.1016/j.tim.2019.03.004
- Symbiodinium Functional Diversity in the Coral Siderastrea siderea Is Influenced by Thermal Stress and Reef Environment, but Not Ocean Acidification S. Davies et al. 10.3389/fmars.2018.00150
- Coral Probiotics: Premise, Promise, Prospects R. Peixoto et al. 10.1146/annurev-animal-090120-115444
- Short-term ocean acidification decreases pulsation and growth of the widespread soft coral Xenia umbellata A. Tilstra et al. 10.1371/journal.pone.0294470
- Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario E. Rivest et al. 10.1098/rspb.2016.2825
- Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress P. Tremblay et al. 10.1038/srep38112
- Quantifying sponge host and microbial symbiont contribution to dissolved organic matter uptake through cell separation M. Hudspith et al. 10.3354/meps13789
- Proteome and microbiota analyses characterizing dynamic coral-algae-microbe tripartite interactions under simulated rapid ocean acidification Z. Lin et al. 10.1016/j.scitotenv.2021.152266
- High CO2 detrimentally affects tissue regeneration of Red Sea corals R. Horwitz & M. Fine 10.1007/s00338-014-1150-5
- Stylophora under stress: A review of research trends and impacts of stressors on a model coral species Z. Meziere et al. 10.1016/j.scitotenv.2021.151639
- Juveniles of the Atlantic coral, Favia fragum (Esper, 1797) do not invest energy to maintain calcification under ocean acidification E. Drenkard et al. 10.1016/j.jembe.2018.07.007
- Elevated p CO 2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes C. Wall et al. 10.1098/rsos.170683
- First Evidence of an Important Organic Matter Trophic Pathway between Temperate Corals and Pelagic Microbial Communities J. Fonvielle et al. 10.1371/journal.pone.0139175
- Coral ecophysiology from the perspective of biogeochemical cycles in coral reefs Y. Tanaka 10.5928/kaiyou.24.6_189
- Genetic and physiological traits conferring tolerance to ocean acidification in mesophotic corals F. Scucchia et al. 10.1111/gcb.15812
- Distinct Bleaching Resilience of Photosynthetic Plastid-Bearing Mollusks Under Thermal Stress and High CO2 Conditions G. Dionísio et al. 10.3389/fphys.2018.01675
- Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata P. Tremblay et al. 10.1007/s00338-013-1100-7
- Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of experimental research W. Krämer et al. 10.1038/s42003-022-04353-1
- ATP Supply May Contribute to Light-Enhanced Calcification in Corals More Than Abiotic Mechanisms G. Galli & C. Solidoro 10.3389/fmars.2018.00068
- Nitrogen cycling in corals: the key to understanding holobiont functioning? N. Rädecker et al. 10.1016/j.tim.2015.03.008
- Species‐specific photosynthetic responses of symbiotic zoanthids to thermal stress and ocean acidification E. Graham & R. Sanders 10.1111/maec.12291
- The acute transcriptomic response of coral-algae interactions to pH fluctuation Z. Lin et al. 10.1016/j.margen.2018.08.006
- In situ lesion recovery of Scleractinian branching coral wild colonies from asexual coral propagation K. Chew et al. 10.1016/j.rsma.2024.103615
- Ocean acidification reduces feeding rates in the scleractinian coral Stylophora pistillata F. Houlbrèque et al. 10.1002/lno.10003
- Differential carbon utilization and asexual reproduction under elevated pCO2 conditions in the model anemone, Exaiptasia pallida, hosting different symbionts K. Hoadley et al. 10.1002/lno.10160
- Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts K. Hoadley et al. 10.1007/s00338-016-1404-5
- Threatened Caribbean Coral Is Able to Mitigate the Adverse Effects of Ocean Acidification on Calcification by Increasing Feeding Rate E. Towle et al. 10.1371/journal.pone.0123394
27 citations as recorded by crossref.
- Inorganic carbon is scarce for symbionts in scleractinian corals A. Tansik et al. 10.1002/lno.10550
- Effects of Temperature and pCO2 on Population Regulation of Symbiodinium spp. in a Tropical Reef Coral G. Baghdasarian et al. 10.1086/692718
- Lesion recovery of two scleractinian corals under low pH conditions: Implications for restoration efforts E. Hall et al. 10.1016/j.marpolbul.2015.08.030
- Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms J. Helgoe et al. 10.1111/brv.13042
- Nutrient Availability and Metabolism Affect the Stability of Coral–Symbiodiniaceae Symbioses L. Morris et al. 10.1016/j.tim.2019.03.004
- Symbiodinium Functional Diversity in the Coral Siderastrea siderea Is Influenced by Thermal Stress and Reef Environment, but Not Ocean Acidification S. Davies et al. 10.3389/fmars.2018.00150
- Coral Probiotics: Premise, Promise, Prospects R. Peixoto et al. 10.1146/annurev-animal-090120-115444
- Short-term ocean acidification decreases pulsation and growth of the widespread soft coral Xenia umbellata A. Tilstra et al. 10.1371/journal.pone.0294470
- Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario E. Rivest et al. 10.1098/rspb.2016.2825
- Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress P. Tremblay et al. 10.1038/srep38112
- Quantifying sponge host and microbial symbiont contribution to dissolved organic matter uptake through cell separation M. Hudspith et al. 10.3354/meps13789
- Proteome and microbiota analyses characterizing dynamic coral-algae-microbe tripartite interactions under simulated rapid ocean acidification Z. Lin et al. 10.1016/j.scitotenv.2021.152266
- High CO2 detrimentally affects tissue regeneration of Red Sea corals R. Horwitz & M. Fine 10.1007/s00338-014-1150-5
- Stylophora under stress: A review of research trends and impacts of stressors on a model coral species Z. Meziere et al. 10.1016/j.scitotenv.2021.151639
- Juveniles of the Atlantic coral, Favia fragum (Esper, 1797) do not invest energy to maintain calcification under ocean acidification E. Drenkard et al. 10.1016/j.jembe.2018.07.007
- Elevated p CO 2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes C. Wall et al. 10.1098/rsos.170683
- First Evidence of an Important Organic Matter Trophic Pathway between Temperate Corals and Pelagic Microbial Communities J. Fonvielle et al. 10.1371/journal.pone.0139175
- Coral ecophysiology from the perspective of biogeochemical cycles in coral reefs Y. Tanaka 10.5928/kaiyou.24.6_189
- Genetic and physiological traits conferring tolerance to ocean acidification in mesophotic corals F. Scucchia et al. 10.1111/gcb.15812
- Distinct Bleaching Resilience of Photosynthetic Plastid-Bearing Mollusks Under Thermal Stress and High CO2 Conditions G. Dionísio et al. 10.3389/fphys.2018.01675
- Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata P. Tremblay et al. 10.1007/s00338-013-1100-7
- Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of experimental research W. Krämer et al. 10.1038/s42003-022-04353-1
- ATP Supply May Contribute to Light-Enhanced Calcification in Corals More Than Abiotic Mechanisms G. Galli & C. Solidoro 10.3389/fmars.2018.00068
- Nitrogen cycling in corals: the key to understanding holobiont functioning? N. Rädecker et al. 10.1016/j.tim.2015.03.008
- Species‐specific photosynthetic responses of symbiotic zoanthids to thermal stress and ocean acidification E. Graham & R. Sanders 10.1111/maec.12291
- The acute transcriptomic response of coral-algae interactions to pH fluctuation Z. Lin et al. 10.1016/j.margen.2018.08.006
- In situ lesion recovery of Scleractinian branching coral wild colonies from asexual coral propagation K. Chew et al. 10.1016/j.rsma.2024.103615
4 citations as recorded by crossref.
- Ocean acidification reduces feeding rates in the scleractinian coral Stylophora pistillata F. Houlbrèque et al. 10.1002/lno.10003
- Differential carbon utilization and asexual reproduction under elevated pCO2 conditions in the model anemone, Exaiptasia pallida, hosting different symbionts K. Hoadley et al. 10.1002/lno.10160
- Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts K. Hoadley et al. 10.1007/s00338-016-1404-5
- Threatened Caribbean Coral Is Able to Mitigate the Adverse Effects of Ocean Acidification on Calcification by Increasing Feeding Rate E. Towle et al. 10.1371/journal.pone.0123394
Saved (final revised paper)
Saved (final revised paper)
Saved (preprint)
Latest update: 19 Nov 2024
Altmetrics
Final-revised paper
Preprint