Articles | Volume 10, issue 2
https://doi.org/10.5194/bg-10-719-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-719-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Arctic microbial community dynamics influenced by elevated CO2 levels
C. P. D. Brussaard
Department of Biological Oceanography, NIOZ – Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
A. A. M. Noordeloos
Department of Biological Oceanography, NIOZ – Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
H. Witte
Department of Biological Oceanography, NIOZ – Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
M. C. J. Collenteur
Department of Biological Oceanography, NIOZ – Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
K. Schulz
Helmholtz Centre for Ocean Research (GEOMAR), Kiel, Germany
A. Ludwig
Helmholtz Centre for Ocean Research (GEOMAR), Kiel, Germany
U. Riebesell
Helmholtz Centre for Ocean Research (GEOMAR), Kiel, Germany
Viewed
Total article views: 7,360 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 12 Sep 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,608 | 3,457 | 295 | 7,360 | 189 | 130 |
- HTML: 3,608
- PDF: 3,457
- XML: 295
- Total: 7,360
- BibTeX: 189
- EndNote: 130
Total article views: 5,372 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,152 | 1,975 | 245 | 5,372 | 169 | 127 |
- HTML: 3,152
- PDF: 1,975
- XML: 245
- Total: 5,372
- BibTeX: 169
- EndNote: 127
Total article views: 1,988 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 12 Sep 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
456 | 1,482 | 50 | 1,988 | 20 | 3 |
- HTML: 456
- PDF: 1,482
- XML: 50
- Total: 1,988
- BibTeX: 20
- EndNote: 3
Cited
109 citations as recorded by crossref.
- Increasing P limitation and viral infection impact lipid remodeling of the picophytoplankter <i>Micromonas pusilla</i> D. Maat et al. 10.5194/bg-13-1667-2016
- Long photoperiods sustain high pH in Arctic kelp forests D. Krause-Jensen et al. 10.1126/sciadv.1501938
- CO<sub>2</sub> increases <sup>14</sup>C primary production in an Arctic plankton community A. Engel et al. 10.5194/bg-10-1291-2013
- Experimental evolution gone wild M. Scheinin et al. 10.1098/rsif.2015.0056
- Viral-Mediated Microbe Mortality Modulated by Ocean Acidification and Eutrophication: Consequences for the Carbon Fluxes Through the Microbial Food Web A. Malits et al. 10.3389/fmicb.2021.635821
- Microzooplankton Communities in a Changing Ocean: A Risk Assessment M. López-Abbate 10.3390/d13020082
- Response of halocarbons to ocean acidification in the Arctic F. Hopkins et al. 10.5194/bg-10-2331-2013
- Response of a phytoplankton community to nutrient addition under different CO2 and pH conditions T. Hama et al. 10.1007/s10872-015-0322-4
- pCO2 effects on species composition and growth of an estuarine phytoplankton community J. Grear et al. 10.1016/j.ecss.2017.03.016
- Simulated ocean acidification reveals winners and losers in coastal phytoplankton L. Bach et al. 10.1371/journal.pone.0188198
- Increased fitness of a key appendicularian zooplankton species under warmer, acidified seawater conditions J. Bouquet et al. 10.1371/journal.pone.0190625
- Impact of ocean acidification on the structure of future phytoplankton communities S. Dutkiewicz et al. 10.1038/nclimate2722
- Multiple environmental changes induce interactive effects on bacterial degradation activity in the Arctic Ocean J. Piontek et al. 10.1002/lno.10112
- Implications of elevated CO<sub>2</sub> on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach J. Czerny et al. 10.5194/bg-10-3109-2013
- Vertical export of marine pelagic protists in an ice-free high-Arctic fjord (Adventfjorden, West Spitsbergen) throughout 2011-2012 M. Marquardt et al. 10.3354/ame01904
- Copepod response to ocean acidification in a low nutrient-low chlorophyll environment in the NW Mediterranean Sea S. Zervoudaki et al. 10.1016/j.ecss.2016.06.030
- Enhanced CO2 concentrations change the structure of Antarctic marine microbial communities A. Davidson et al. 10.3354/meps11742
- Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes A. Worden et al. 10.1126/science.1257594
- Mechanisms driving Antarctic microbial community responses to ocean acidification: a network modelling approach R. Subramaniam et al. 10.1007/s00300-016-1989-8
- Technical Note: A mobile sea-going mesocosm system – new opportunities for ocean change research U. Riebesell et al. 10.5194/bg-10-1835-2013
- The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate F. Hopkins et al. 10.1098/rspa.2019.0769
- Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait) C. Cathalot et al. 10.1371/journal.pone.0138339
- Ocean acidification effect on prokaryotic metabolism tested in two diverse trophic regimes in the Mediterranean Sea M. Celussi et al. 10.1016/j.ecss.2015.08.015
- Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions A. Webb et al. 10.1071/EN14268
- Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis Y. Wang et al. 10.1093/icesjms/fsv187
- Borealization impacts shelf ecosystems across the Arctic B. Husson et al. 10.3389/fenvs.2024.1481420
- Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms B. Bergen et al. 10.1111/1462-2920.13549
- Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions T. Hornick et al. 10.5194/bg-14-1-2017
- Elevated CO 2 and Phosphate Limitation Favor Micromonas pusilla through Stimulated Growth and Reduced Viral Impact D. Maat et al. 10.1128/AEM.03639-13
- Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome Z. Ballard et al. 10.1021/acsnano.7b08660
- Freshwater runoff effects on the production of biogenic silicate and chlorophyll-a in western Patagonia archipelago (50–51°S) R. Torres et al. 10.1016/j.ecss.2020.106597
- Climate change and n-3 LC-PUFA availability K. Tan et al. 10.1016/j.plipres.2022.101161
- Pelagic community production and carbon-nutrient stoichiometry under variable ocean acidification in an Arctic fjord A. Silyakova et al. 10.5194/bg-10-4847-2013
- Low CO2 Sensitivity of Microzooplankton Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm Study H. Horn et al. 10.1371/journal.pone.0165800
- Ocean acidification alters the nutritional value of Antarctic diatoms R. Duncan et al. 10.1111/nph.17868
- Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review T. Yu & Y. Chen 10.1016/j.scitotenv.2018.11.301
- Impacts of Temperature, CO2, and Salinity on Phytoplankton Community Composition in the Western Arctic Ocean K. Sugie et al. 10.3389/fmars.2019.00821
- Floating tubes test sea-life sensitivity H. Boytchev 10.1038/498420a
- Ocean acidification and viral replication cycles: Frequency of lytically infected and lysogenic cells during a mesocosm experiment in the NW Mediterranean Sea A. Tsiola et al. 10.1016/j.ecss.2016.05.003
- The ocean carbon sink – impacts, vulnerabilities and challenges C. Heinze et al. 10.5194/esd-6-327-2015
- Influence of Irradiance and Temperature on the Virus MpoV-45T Infecting the Arctic Picophytoplankter Micromonas polaris G. Piedade et al. 10.3390/v10120676
- Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses D. Maat et al. 10.3390/v9060134
- Marine bacterial communities are resistant to elevated carbon dioxide levels A. Oliver et al. 10.1111/1758-2229.12159
- The Arctic picoeukaryote <i>Micromonas pusilla</i> benefits synergistically from warming and ocean acidification C. Hoppe et al. 10.5194/bg-15-4353-2018
- Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer K. Westwood et al. 10.1016/j.jembe.2017.11.003
- Sediments from Arctic Tide-Water Glaciers Remove Coastal Marine Viruses and Delay Host Infection D. Maat et al. 10.3390/v11020123
- Ocean acidification reduces transfer of essential biomolecules in a natural plankton community J. Bermúdez et al. 10.1038/srep27749
- Abundance and activity of sympagic viruses near the Western Antarctic Peninsula A. Rocchi et al. 10.1007/s00300-022-03073-w
- Consistent increase in dimethyl sulfide (DMS) in response to high CO<sub>2</sub> in five shipboard bioassays from contrasting NW European waters F. Hopkins & S. Archer 10.5194/bg-11-4925-2014
- Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea R. Bermúdez et al. 10.5194/bg-13-6625-2016
- A meta-analysis of microcosm experiments shows that dimethyl sulfide (DMS) production in polar waters is insensitive to ocean acidification F. Hopkins et al. 10.5194/bg-17-163-2020
- Dynamics of transparent exopolymeric particles and their precursors during a mesocosm experiment: Impact of ocean acidification G. Bourdin et al. 10.1016/j.ecss.2016.02.007
- Adaptive responses of free‐living and symbiotic microalgae to simulated future ocean conditions W. Chan et al. 10.1111/gcb.15546
- Pan-Arctic patterns of planktonic heterotrophic microbial abundance and processes: Controlling factors and potential impacts of warming R. Maranger et al. 10.1016/j.pocean.2015.07.006
- Effect of CO2, nutrients and light on coastal plankton. III. Trophic cascade, size structure and composition A. Reul et al. 10.3354/ab00585
- Functional Redundancy Facilitates Resilience of Subarctic Phytoplankton Assemblages toward Ocean Acidification and High Irradiance C. Hoppe et al. 10.3389/fmars.2017.00229
- High CO2 Under Nutrient Fertilization Increases Primary Production and Biomass in Subtropical Phytoplankton Communities: A Mesocosm Approach N. Hernández-Hernández et al. 10.3389/fmars.2018.00213
- A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions S. Chen et al. 10.5194/bg-11-4829-2014
- Southern Ocean phytoplankton physiology in a changing climate K. Petrou et al. 10.1016/j.jplph.2016.05.004
- Hydrography and food distribution during a tidal cycle above a cold-water coral mound E. de Froe et al. 10.1016/j.dsr.2022.103854
- Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment K. Spilling et al. 10.5194/bg-13-4707-2016
- Coccolithophore community response to increasing pCO2 in Mediterranean oligotrophic waters A. Oviedo et al. 10.1016/j.ecss.2015.12.007
- Effect of ocean acidification and elevated <i>f</i>CO<sub>2</sub> on trace gas production by a Baltic Sea summer phytoplankton community A. Webb et al. 10.5194/bg-13-4595-2016
- Mesozooplankton community development at elevated CO<sub>2</sub> concentrations: results from a mesocosm experiment in an Arctic fjord B. Niehoff et al. 10.5194/bg-10-1391-2013
- Increasing CO2 changes community composition of pico- and nano-sized protists and prokaryotes at a coastal Antarctic site P. Thomson et al. 10.3354/meps11803
- Ocean acidification modifies biomolecule composition in organic matter through complex interactions J. Grosse et al. 10.1038/s41598-020-77645-3
- Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study S. Endres et al. 10.1371/journal.pone.0099228
- Ocean acidification altered microbial functional potential in the Arctic Ocean Y. Wang et al. 10.1002/lno.12375
- Mechanisms of microbial carbon sequestration in the ocean – future research directions N. Jiao et al. 10.5194/bg-11-5285-2014
- Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates S. Deppeler et al. 10.5194/bg-17-4153-2020
- Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase H. Herrmann et al. 10.1021/cr500447k
- The Effects of Ocean Acidification and Warming on Growth of a Natural Community of Coastal Phytoplankton B. Hyun et al. 10.3390/jmse8100821
- Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean T. Biggs et al. 10.1038/s41396-021-01033-6
- The Arctic picoeukaryote <i>Micromonas pusilla</i> benefits from ocean acidification under constant and dynamic light E. White et al. 10.5194/bg-17-635-2020
- High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer J. Rahlff et al. 10.1093/femsec/fix041
- Phytoplankton Blooms at Increasing Levels of Atmospheric Carbon Dioxide: Experimental Evidence for Negative Effects on Prymnesiophytes and Positive on Small Picoeukaryotes K. Schulz et al. 10.3389/fmars.2017.00064
- Contrasting effects of ocean acidification on the microbial food web under different trophic conditions M. Sala et al. 10.1093/icesjms/fsv130
- Drivers of spatial and temporal micro- and mesozooplankton dynamics in an estuary under strong anthropogenic influences (The Eastern Scheldt, Netherlands) H. Horn et al. 10.1016/j.seares.2023.102357
- Ocean acidification does not alter grazing in the calanoid copepods Calanus finmarchicus and Calanus glacialis N. Hildebrandt et al. 10.1093/icesjms/fsv226
- Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions R. Hussherr et al. 10.5194/bg-14-2407-2017
- Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in the Arctic Ocean R. Zhang et al. 10.5194/bg-10-3679-2013
- Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance C. Hoppe et al. 10.1007/s00300-017-2186-0
- Phytoplankton Do Not Produce Carbon‐Rich Organic Matter in High CO2 Oceans J. Kim et al. 10.1029/2017GL075865
- Limited impact of ocean acidification on phytoplankton community structure and carbon export in an oligotrophic environment: Results from two short-term mesocosm studies in the Mediterranean Sea F. Gazeau et al. 10.1016/j.ecss.2016.11.016
- Effect of ocean acidification on the fatty acid composition of a natural plankton community E. Leu et al. 10.5194/bg-10-1143-2013
- A <sup>13</sup>C labelling study on carbon fluxes in Arctic plankton communities under elevated CO<sub>2</sub> levels A. de Kluijver et al. 10.5194/bg-10-1425-2013
- Emiliania huxleyi—Bacteria Interactions under Increasing CO2 Concentrations J. Barcelos e Ramos et al. 10.3390/microorganisms10122461
- Experimental assessment of the sensitivity of an estuarine phytoplankton fall bloom to acidification and warming R. Bénard et al. 10.5194/bg-15-4883-2018
- High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community N. Aberle et al. 10.5194/bg-10-1471-2013
- Ecological Responses of Core Phytoplankton by Latitudinal Differences in the Arctic Ocean in Late Summer Revealed by 18S rDNA Metabarcoding H. Joo et al. 10.3389/fmars.2022.879911
- Phytoplankton responses and associated carbon cycling during shipboard carbonate chemistry manipulation experiments conducted around Northwest European shelf seas S. Richier et al. 10.5194/bg-11-4733-2014
- Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment M. Moustaka-Gouni et al. 10.1016/j.protis.2016.06.004
- Ocean acidification changes the structure of an Antarctic coastal protistan community A. Hancock et al. 10.5194/bg-15-2393-2018
- Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency A. Calbet et al. 10.1371/journal.pone.0094388
- Plankton responses to ocean acidification: The role of nutrient limitation S. Alvarez-Fernandez et al. 10.1016/j.pocean.2018.04.006
- Effects of elevated CO<sub>2</sub> and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel M. Keys et al. 10.5194/bg-15-3203-2018
- Impact of dust addition on the microbial food web under present and future conditions of pH and temperature J. Dinasquet et al. 10.5194/bg-19-1303-2022
- High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community H. Horn et al. 10.1007/s00227-020-03683-0
- Effect of CO<sub>2</sub> enrichment on bacterial metabolism in an Arctic fjord C. Motegi et al. 10.5194/bg-10-3285-2013
- Warming and CO2 Enhance Arctic Heterotrophic Microbial Activity D. Vaqué et al. 10.3389/fmicb.2019.00494
- Alterations in microbial community composition with increasing <i>f</i>CO<sub>2</sub>: a mesocosm study in the eastern Baltic Sea K. Crawfurd et al. 10.5194/bg-14-3831-2017
- Ocean Acidification Induces Changes in Virus–Host Relationships in Mediterranean Benthic Ecosystems M. Tangherlini et al. 10.3390/microorganisms9040769
- Interactions between elevated CO2 levels and floating aquatic plants on the alteration of bacterial function in carbon assimilation and decomposition in eutrophic waters M. Shi et al. 10.1016/j.watres.2019.115398
- Effect of elevated CO<sub>2</sub> on organic matter pools and fluxes in a summer Baltic Sea plankton community A. Paul et al. 10.5194/bg-12-6181-2015
- Carbon-13 labelling shows no effect of ocean acidification on carbon transfer in Mediterranean plankton communities L. Maugendre et al. 10.1016/j.ecss.2015.12.018
- Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide K. Schulz et al. 10.5194/bg-10-161-2013
- Effect of elevated CO<sub>2</sub> on the dynamics of particle-attached and free-living bacterioplankton communities in an Arctic fjord M. Sperling et al. 10.5194/bg-10-181-2013
- Response of bacterioplankton activity in an Arctic fjord system to elevated <i>p</i>CO<sub>2</sub>: results from a mesocosm perturbation study J. Piontek et al. 10.5194/bg-10-297-2013
- Effect of increased <i>p</i>CO<sub>2</sub> on the planktonic metabolic balance during a mesocosm experiment in an Arctic fjord T. Tanaka et al. 10.5194/bg-10-315-2013
105 citations as recorded by crossref.
- Increasing P limitation and viral infection impact lipid remodeling of the picophytoplankter <i>Micromonas pusilla</i> D. Maat et al. 10.5194/bg-13-1667-2016
- Long photoperiods sustain high pH in Arctic kelp forests D. Krause-Jensen et al. 10.1126/sciadv.1501938
- CO<sub>2</sub> increases <sup>14</sup>C primary production in an Arctic plankton community A. Engel et al. 10.5194/bg-10-1291-2013
- Experimental evolution gone wild M. Scheinin et al. 10.1098/rsif.2015.0056
- Viral-Mediated Microbe Mortality Modulated by Ocean Acidification and Eutrophication: Consequences for the Carbon Fluxes Through the Microbial Food Web A. Malits et al. 10.3389/fmicb.2021.635821
- Microzooplankton Communities in a Changing Ocean: A Risk Assessment M. López-Abbate 10.3390/d13020082
- Response of halocarbons to ocean acidification in the Arctic F. Hopkins et al. 10.5194/bg-10-2331-2013
- Response of a phytoplankton community to nutrient addition under different CO2 and pH conditions T. Hama et al. 10.1007/s10872-015-0322-4
- pCO2 effects on species composition and growth of an estuarine phytoplankton community J. Grear et al. 10.1016/j.ecss.2017.03.016
- Simulated ocean acidification reveals winners and losers in coastal phytoplankton L. Bach et al. 10.1371/journal.pone.0188198
- Increased fitness of a key appendicularian zooplankton species under warmer, acidified seawater conditions J. Bouquet et al. 10.1371/journal.pone.0190625
- Impact of ocean acidification on the structure of future phytoplankton communities S. Dutkiewicz et al. 10.1038/nclimate2722
- Multiple environmental changes induce interactive effects on bacterial degradation activity in the Arctic Ocean J. Piontek et al. 10.1002/lno.10112
- Implications of elevated CO<sub>2</sub> on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach J. Czerny et al. 10.5194/bg-10-3109-2013
- Vertical export of marine pelagic protists in an ice-free high-Arctic fjord (Adventfjorden, West Spitsbergen) throughout 2011-2012 M. Marquardt et al. 10.3354/ame01904
- Copepod response to ocean acidification in a low nutrient-low chlorophyll environment in the NW Mediterranean Sea S. Zervoudaki et al. 10.1016/j.ecss.2016.06.030
- Enhanced CO2 concentrations change the structure of Antarctic marine microbial communities A. Davidson et al. 10.3354/meps11742
- Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes A. Worden et al. 10.1126/science.1257594
- Mechanisms driving Antarctic microbial community responses to ocean acidification: a network modelling approach R. Subramaniam et al. 10.1007/s00300-016-1989-8
- Technical Note: A mobile sea-going mesocosm system – new opportunities for ocean change research U. Riebesell et al. 10.5194/bg-10-1835-2013
- The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate F. Hopkins et al. 10.1098/rspa.2019.0769
- Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait) C. Cathalot et al. 10.1371/journal.pone.0138339
- Ocean acidification effect on prokaryotic metabolism tested in two diverse trophic regimes in the Mediterranean Sea M. Celussi et al. 10.1016/j.ecss.2015.08.015
- Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions A. Webb et al. 10.1071/EN14268
- Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis Y. Wang et al. 10.1093/icesjms/fsv187
- Borealization impacts shelf ecosystems across the Arctic B. Husson et al. 10.3389/fenvs.2024.1481420
- Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms B. Bergen et al. 10.1111/1462-2920.13549
- Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions T. Hornick et al. 10.5194/bg-14-1-2017
- Elevated CO 2 and Phosphate Limitation Favor Micromonas pusilla through Stimulated Growth and Reduced Viral Impact D. Maat et al. 10.1128/AEM.03639-13
- Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome Z. Ballard et al. 10.1021/acsnano.7b08660
- Freshwater runoff effects on the production of biogenic silicate and chlorophyll-a in western Patagonia archipelago (50–51°S) R. Torres et al. 10.1016/j.ecss.2020.106597
- Climate change and n-3 LC-PUFA availability K. Tan et al. 10.1016/j.plipres.2022.101161
- Pelagic community production and carbon-nutrient stoichiometry under variable ocean acidification in an Arctic fjord A. Silyakova et al. 10.5194/bg-10-4847-2013
- Low CO2 Sensitivity of Microzooplankton Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm Study H. Horn et al. 10.1371/journal.pone.0165800
- Ocean acidification alters the nutritional value of Antarctic diatoms R. Duncan et al. 10.1111/nph.17868
- Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review T. Yu & Y. Chen 10.1016/j.scitotenv.2018.11.301
- Impacts of Temperature, CO2, and Salinity on Phytoplankton Community Composition in the Western Arctic Ocean K. Sugie et al. 10.3389/fmars.2019.00821
- Floating tubes test sea-life sensitivity H. Boytchev 10.1038/498420a
- Ocean acidification and viral replication cycles: Frequency of lytically infected and lysogenic cells during a mesocosm experiment in the NW Mediterranean Sea A. Tsiola et al. 10.1016/j.ecss.2016.05.003
- The ocean carbon sink – impacts, vulnerabilities and challenges C. Heinze et al. 10.5194/esd-6-327-2015
- Influence of Irradiance and Temperature on the Virus MpoV-45T Infecting the Arctic Picophytoplankter Micromonas polaris G. Piedade et al. 10.3390/v10120676
- Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses D. Maat et al. 10.3390/v9060134
- Marine bacterial communities are resistant to elevated carbon dioxide levels A. Oliver et al. 10.1111/1758-2229.12159
- The Arctic picoeukaryote <i>Micromonas pusilla</i> benefits synergistically from warming and ocean acidification C. Hoppe et al. 10.5194/bg-15-4353-2018
- Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer K. Westwood et al. 10.1016/j.jembe.2017.11.003
- Sediments from Arctic Tide-Water Glaciers Remove Coastal Marine Viruses and Delay Host Infection D. Maat et al. 10.3390/v11020123
- Ocean acidification reduces transfer of essential biomolecules in a natural plankton community J. Bermúdez et al. 10.1038/srep27749
- Abundance and activity of sympagic viruses near the Western Antarctic Peninsula A. Rocchi et al. 10.1007/s00300-022-03073-w
- Consistent increase in dimethyl sulfide (DMS) in response to high CO<sub>2</sub> in five shipboard bioassays from contrasting NW European waters F. Hopkins & S. Archer 10.5194/bg-11-4925-2014
- Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea R. Bermúdez et al. 10.5194/bg-13-6625-2016
- A meta-analysis of microcosm experiments shows that dimethyl sulfide (DMS) production in polar waters is insensitive to ocean acidification F. Hopkins et al. 10.5194/bg-17-163-2020
- Dynamics of transparent exopolymeric particles and their precursors during a mesocosm experiment: Impact of ocean acidification G. Bourdin et al. 10.1016/j.ecss.2016.02.007
- Adaptive responses of free‐living and symbiotic microalgae to simulated future ocean conditions W. Chan et al. 10.1111/gcb.15546
- Pan-Arctic patterns of planktonic heterotrophic microbial abundance and processes: Controlling factors and potential impacts of warming R. Maranger et al. 10.1016/j.pocean.2015.07.006
- Effect of CO2, nutrients and light on coastal plankton. III. Trophic cascade, size structure and composition A. Reul et al. 10.3354/ab00585
- Functional Redundancy Facilitates Resilience of Subarctic Phytoplankton Assemblages toward Ocean Acidification and High Irradiance C. Hoppe et al. 10.3389/fmars.2017.00229
- High CO2 Under Nutrient Fertilization Increases Primary Production and Biomass in Subtropical Phytoplankton Communities: A Mesocosm Approach N. Hernández-Hernández et al. 10.3389/fmars.2018.00213
- A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions S. Chen et al. 10.5194/bg-11-4829-2014
- Southern Ocean phytoplankton physiology in a changing climate K. Petrou et al. 10.1016/j.jplph.2016.05.004
- Hydrography and food distribution during a tidal cycle above a cold-water coral mound E. de Froe et al. 10.1016/j.dsr.2022.103854
- Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment K. Spilling et al. 10.5194/bg-13-4707-2016
- Coccolithophore community response to increasing pCO2 in Mediterranean oligotrophic waters A. Oviedo et al. 10.1016/j.ecss.2015.12.007
- Effect of ocean acidification and elevated <i>f</i>CO<sub>2</sub> on trace gas production by a Baltic Sea summer phytoplankton community A. Webb et al. 10.5194/bg-13-4595-2016
- Mesozooplankton community development at elevated CO<sub>2</sub> concentrations: results from a mesocosm experiment in an Arctic fjord B. Niehoff et al. 10.5194/bg-10-1391-2013
- Increasing CO2 changes community composition of pico- and nano-sized protists and prokaryotes at a coastal Antarctic site P. Thomson et al. 10.3354/meps11803
- Ocean acidification modifies biomolecule composition in organic matter through complex interactions J. Grosse et al. 10.1038/s41598-020-77645-3
- Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study S. Endres et al. 10.1371/journal.pone.0099228
- Ocean acidification altered microbial functional potential in the Arctic Ocean Y. Wang et al. 10.1002/lno.12375
- Mechanisms of microbial carbon sequestration in the ocean – future research directions N. Jiao et al. 10.5194/bg-11-5285-2014
- Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates S. Deppeler et al. 10.5194/bg-17-4153-2020
- Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase H. Herrmann et al. 10.1021/cr500447k
- The Effects of Ocean Acidification and Warming on Growth of a Natural Community of Coastal Phytoplankton B. Hyun et al. 10.3390/jmse8100821
- Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean T. Biggs et al. 10.1038/s41396-021-01033-6
- The Arctic picoeukaryote <i>Micromonas pusilla</i> benefits from ocean acidification under constant and dynamic light E. White et al. 10.5194/bg-17-635-2020
- High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer J. Rahlff et al. 10.1093/femsec/fix041
- Phytoplankton Blooms at Increasing Levels of Atmospheric Carbon Dioxide: Experimental Evidence for Negative Effects on Prymnesiophytes and Positive on Small Picoeukaryotes K. Schulz et al. 10.3389/fmars.2017.00064
- Contrasting effects of ocean acidification on the microbial food web under different trophic conditions M. Sala et al. 10.1093/icesjms/fsv130
- Drivers of spatial and temporal micro- and mesozooplankton dynamics in an estuary under strong anthropogenic influences (The Eastern Scheldt, Netherlands) H. Horn et al. 10.1016/j.seares.2023.102357
- Ocean acidification does not alter grazing in the calanoid copepods Calanus finmarchicus and Calanus glacialis N. Hildebrandt et al. 10.1093/icesjms/fsv226
- Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions R. Hussherr et al. 10.5194/bg-14-2407-2017
- Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in the Arctic Ocean R. Zhang et al. 10.5194/bg-10-3679-2013
- Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance C. Hoppe et al. 10.1007/s00300-017-2186-0
- Phytoplankton Do Not Produce Carbon‐Rich Organic Matter in High CO2 Oceans J. Kim et al. 10.1029/2017GL075865
- Limited impact of ocean acidification on phytoplankton community structure and carbon export in an oligotrophic environment: Results from two short-term mesocosm studies in the Mediterranean Sea F. Gazeau et al. 10.1016/j.ecss.2016.11.016
- Effect of ocean acidification on the fatty acid composition of a natural plankton community E. Leu et al. 10.5194/bg-10-1143-2013
- A <sup>13</sup>C labelling study on carbon fluxes in Arctic plankton communities under elevated CO<sub>2</sub> levels A. de Kluijver et al. 10.5194/bg-10-1425-2013
- Emiliania huxleyi—Bacteria Interactions under Increasing CO2 Concentrations J. Barcelos e Ramos et al. 10.3390/microorganisms10122461
- Experimental assessment of the sensitivity of an estuarine phytoplankton fall bloom to acidification and warming R. Bénard et al. 10.5194/bg-15-4883-2018
- High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community N. Aberle et al. 10.5194/bg-10-1471-2013
- Ecological Responses of Core Phytoplankton by Latitudinal Differences in the Arctic Ocean in Late Summer Revealed by 18S rDNA Metabarcoding H. Joo et al. 10.3389/fmars.2022.879911
- Phytoplankton responses and associated carbon cycling during shipboard carbonate chemistry manipulation experiments conducted around Northwest European shelf seas S. Richier et al. 10.5194/bg-11-4733-2014
- Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment M. Moustaka-Gouni et al. 10.1016/j.protis.2016.06.004
- Ocean acidification changes the structure of an Antarctic coastal protistan community A. Hancock et al. 10.5194/bg-15-2393-2018
- Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency A. Calbet et al. 10.1371/journal.pone.0094388
- Plankton responses to ocean acidification: The role of nutrient limitation S. Alvarez-Fernandez et al. 10.1016/j.pocean.2018.04.006
- Effects of elevated CO<sub>2</sub> and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel M. Keys et al. 10.5194/bg-15-3203-2018
- Impact of dust addition on the microbial food web under present and future conditions of pH and temperature J. Dinasquet et al. 10.5194/bg-19-1303-2022
- High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community H. Horn et al. 10.1007/s00227-020-03683-0
- Effect of CO<sub>2</sub> enrichment on bacterial metabolism in an Arctic fjord C. Motegi et al. 10.5194/bg-10-3285-2013
- Warming and CO2 Enhance Arctic Heterotrophic Microbial Activity D. Vaqué et al. 10.3389/fmicb.2019.00494
- Alterations in microbial community composition with increasing <i>f</i>CO<sub>2</sub>: a mesocosm study in the eastern Baltic Sea K. Crawfurd et al. 10.5194/bg-14-3831-2017
- Ocean Acidification Induces Changes in Virus–Host Relationships in Mediterranean Benthic Ecosystems M. Tangherlini et al. 10.3390/microorganisms9040769
- Interactions between elevated CO2 levels and floating aquatic plants on the alteration of bacterial function in carbon assimilation and decomposition in eutrophic waters M. Shi et al. 10.1016/j.watres.2019.115398
- Effect of elevated CO<sub>2</sub> on organic matter pools and fluxes in a summer Baltic Sea plankton community A. Paul et al. 10.5194/bg-12-6181-2015
- Carbon-13 labelling shows no effect of ocean acidification on carbon transfer in Mediterranean plankton communities L. Maugendre et al. 10.1016/j.ecss.2015.12.018
4 citations as recorded by crossref.
- Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide K. Schulz et al. 10.5194/bg-10-161-2013
- Effect of elevated CO<sub>2</sub> on the dynamics of particle-attached and free-living bacterioplankton communities in an Arctic fjord M. Sperling et al. 10.5194/bg-10-181-2013
- Response of bacterioplankton activity in an Arctic fjord system to elevated <i>p</i>CO<sub>2</sub>: results from a mesocosm perturbation study J. Piontek et al. 10.5194/bg-10-297-2013
- Effect of increased <i>p</i>CO<sub>2</sub> on the planktonic metabolic balance during a mesocosm experiment in an Arctic fjord T. Tanaka et al. 10.5194/bg-10-315-2013
Saved (final revised paper)
Saved (preprint)
Latest update: 17 Nov 2024
Altmetrics
Final-revised paper
Preprint