Boison, G., Mergel, A., Jolkver, H., and Bothe, H.: bacterial life and dinitrogen fixation at a gypsum rock, Appl. Environ. Microbiol., 70, 7070–7077, 2004.
Bonani, G., Friedmann, E. I., Ocampo-Friedmann, R., McKay, C. P., and Woelfi, W.: Preliminary report on radiocarbon dating of cryptoendolithic microorganisms, Polarforschung, 58, 199–200, 1988.
Büdel, B., Weber, B., Kuhl, M., Pfanz, H., Sultemeyer, D., and Wessels, D.: Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes, Geobiology, 2, 261–268, 2004.
Cockell, C. S., Osinski, G. R., Banerjee, N. R., Howard, K. T., Gilmour, I., and Watson, J. S.: The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite, Geobiology, 8, 293–2308, 2010.
Cole, J. R., Wang, W., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Marsh, T., Garrity, G. M., and Tiedje, J. M.: The Ribosomal Database Project: improved alignments and new tools for rRNA analysis, Nucleic Acids Res., 37, D141–D145, https://doi.org/10.1093/nar/gkn879, 2009.
de la Torre, J., Goebel, B. M., Friedmann, E. I., and Pace, N. R.: Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica, Appl. Environ. Microbiol., 69, 3858–3867, 2003.
de los Ríos, A., Wierzchos, J., Sancho, L. G., and Ascaso, C.: Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems, Environ. Microbiol., 5, 231–237, 2003.
de los Ríos, A., Sancho, L. G., Grube, M., Wierzchos, J., and Ascaso, C.: Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques, New Phytol., 165, 181–190, 2005.
Dong, H., Rech, J. A., Jiang, H., Sun, H., and Buck, B. J.: Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr (Jordan) Deserts, J. Geophys. Res.-Biogeo., 112, G02030, https://doi.org/10.1029/2006JG000385, 2007.
Dowd, S. E., Callaway, T. R., Wolocott, R. D., Sun, Y., McKeehan, T., Hagevoort R. G., and Edrington, T. S.: Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pryosequencing (bTEFAP), BMC Microbiol., 8, 125, https://doi.org/10.1186/1471-2180-8-125, 2008a.
Dowd, S. E., Sun, Y., Wolcott, R. D., Domingo, A., and Carroll, J. A.: Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs, Foodborne Pathog. Dis., 5, 459–472, 2008b.
Ferris, F. G. and Lowson, E. A.: Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara Escarpment, Canadian J. Microbiol., 43, 211–219, 1997.
Friedmann, E. I.: Endolithic microbial life in hot and cold deserts, Origins Life Evol. B., 10, 223–235, 1980.
Friedmann, E. I.: Endolithic microorganisms in the Antarctic cold desert, Science, 215, 1045–1053, 1982.
Friedmann, E. I. and Ocampo-Friedmann, R.: Endolithic microorganisms in extreme dry environments: Analysis of a lithobiontic habitat, in: Current Perspectives in Microbiology, edited by: Klug, M. J. and Reddy, C. A., American Society of Microbiology, Washington, DC, 177–185, 1984.
Friedmann, E. I., Friedmann, R. O., and McKay, C. P.: Adaptations of cryptoendolithic lichens in the Antarctic desert, in: Colloque sur les Ecosystemes Subantarctiques, edited by: Jouventin, P., Masse, L., and Trehen, P., Comite National Francais des Recherches Antarctiques, Paris, 65–70, 1981.
Friedmann, E. I., McKay, C. P., and Nienow, J. A.: The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986, Polar Biol., 7, 273–287, 1987.
Friedmann, E. I., Kappen, L., Meyer, M., and Nienow, J.: Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica, Microbial Ecol., 25, 51–69, 1993.
Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., and Zheng, S.: Soil carbon cycling in a temperate forest: radiocarbon-based estiamtes of residence times, sequestration rates and partitioning of fluxes, Biogeochemistry, 51, 33–69, 2000.
Green, C. and Scow, K.: Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers, Hydrogeol. J., 8, 126–141, 2000.
Guckert, J. B., Antworth, C. P., Nichols, P. D., and White, D. C.: Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments, FEMS Microbiol. Lett., 31, 147–158, 1985.
Hayes, J. M.: Fractionation of carbon and hydrogen isotopes in biosynthetic processes, in: Stable Isotope Geochemistry, edited by: Valley, J. W. and Cole, D., Reviews in Minerology and Geochemistry, 43, 225–227, 2001.
Hirsch, P., Hoffman, B., Gallikowski, C. C., Meys, U., Siebert, J., and Sittig, M.: Diversity and indentification of heterotrophs from Antarctic rocks of the McMurdo Dry Valleys (Ross Desert), Polarforschung, 58, 261–269, 1988.
Hoppert, M., Flies, C., Pohl, W., Gunzi, B. and Schneider, J.: Colonization strategies of lithobiontic microorganisms on carbonate rocks, Environ. Geol., 46, 421–428, 2004.
Horath, T. and Bachofen, R.: Molecular Characterization of an Endolithic Microbial Community in Dolomite Rock in the Central Alps (Switzerland), Microbial Ecol., 58, 290–306, 2009.
Kappen, L., Friedmann, E. I., and Garty, J.: Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat, Flora, 171, 216–235, 1981.
Lafleur, P. M., Humphrey, E. R., St. Louis, V. L., Myklebust, M. C., Papakyriakou, T., Poissant, L., Barker, J. D., Pilote, M., and Swystun, K. A.: Variation in peak growing season net ecosystem production across the Canadian Arctic, Environmental Science and Technology, 46, 7971-7977, 2012.
Naegler, T. and Levin, I.: Closing the radiocarbon budget 1945–2005, J. Geophys. Res., 111, D12311, https://doi.org/10.1029/2005JD006758, 2006.
Norris, T. B. and Castenholz, R. W.: Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park, FEMS Microbiol. Ecol., 57, 470–483, 2006.
Oechel, W. C., Vourlitis, G. L., Hastings, S. J., and Bochkarev, S. A.: Change in Arctic CO
2 flux over two decades: effects of climate change at Barrow, Alaska, Ecol. Appl., 5, 846–855, 1995.
Olsson, I.: The use of oxalic acid as a standard, Radiocarbon Variations and Absolute Chronology, 1970.
Omelon, C. R.: Endolithic Microbial Communities in Polar Desert Habitats, Geomicrobiol. J., 25, 404–414, 2008.
Parnell, J., Lee, P., Cockell, C. S., and Osinski, G. R.: Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars, International J. Astrobiol., 3, 247–256, 2004.
Pointing, S. B., Chan, Y., Lecap, D. C., Lau, M. C. Y., Jurgens, J. A., and Farrell, R. L.: Highly specialized microbial diversity in hyper-aric polar desert, P. Natl. Acad. Sci., 106, 19964–19969, 2009.
Pollard, W., Haltigin, T., Whyte, L., Niedergerger, T., Andersen, D., Omelon, C., Nadeau, J., Eccelstone, M., and Lebeuf, M.: Overview of analogue science activities at the McGill Arctic Research Station, Axel Heiberg Island, Canadian High Arctic, Planet. Space Sc., 57, 646–659, 2009.
Santos, G. M., Southon, J. R., Griffin, S., Beaupre, S. R., and Druffel, E. R. M.: Ultra small-mass AMS
14C sample preparation and analyses at KCCAMS/UCI Facility, Nucl. Instrum. Meth. B, 259, 293–302, https://doi.org/10.1016/j.nimb.2007.01.172, 2007.
Sherwood, A. and Presting, G.: Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria, J. Phycol., 43, 605–608, 2007.
Sterflinger, K.: Fungi as geologic agents, Geomicrobiol. J., 17, 97–124, 2000.
Steven, B., Pollar, W. H., Greer, C. W., and Whyte, L. G.: Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic, Environm. Microbiol., 10, 3388–3403, 2008.
Sun, H. J. and Friedmann, E. I.: Growth on geological time scales in the Antarctic cryptoendolithic microbial community, Geomicrobiol. J., 16, 193–202, 1999.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S.: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecul. Biol. Evol., 28, 2731–2739, 2011.
Vestal, J. R.: Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert, Appl. Environ. Microbiol., 54, 960–965, 1988a.
Vestal, J. R.: Primary production of the cryptoendolithic microbiota from the Antarctic desert, Polarforschung, 58, 193–198, 1988b.
Walker, J. J. and Pace, N. R.: Phylogenetic Composition of Rocky Mountain Endolithic Microbial Ecosystems, Appl. Environ. Microbiol, 73, 3497–3504, 2007a.
Webb, S.: Sam's Microprobe Analysis Kit, Software and documentation available at: http://home.comcast.net/ sam_webb/smak.html, 2012.
White, D. C., Davis, W. M., Nickels, J. S., King, J. D., and Bobbie, R. J.: Determination of the sedimentary microbial biomass by extractable lipid phosphate, Oecologia, 40, 51–62, 1979.
Wierzchos, J., Ascaso, C., Sancho, L. G., and Green, A.: Iron-rich diagenetic minerals are biomarkers of microbial activity in Antarctic rocks, Geomicrobiol. J., 20, 15–24, 2003.
Wierzchos, J., Davila, A. F., Artieda, O., Cámara-Gallego, B., de los Ríos, A., Nealson, K. H., Valea, S., García-González, M. T., and Ascaso, C.: Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: Implications for the search for life on Mars, Icarus, 224, 334–346, 2013.
Ziolkowski, L. A., Wierzchos, J., Davila, A. F., and Slater, G. F.: Radiocarbon evidence of active endolithic microbial communities in the hyper-arid core of the Atacama Desert, Astrobiology, 13, 607–616, https://doi.org/10.1089/ast.2012.0854, 2013.