Articles | Volume 10, issue 12
https://doi.org/10.5194/bg-10-7927-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-7927-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evidence from "Köppen signatures" of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling
T. Denk
Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 Stockholm, Sweden
G. W. Grimm
Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 Stockholm, Sweden
F. Grímsson
University of Vienna, Department of Palaeontology, Althanstrasse 14, 1090 Vienna, Austria
R. Zetter
University of Vienna, Department of Palaeontology, Althanstrasse 14, 1090 Vienna, Austria
Related authors
No articles found.
Jia Gao, Michael S. Engel, Friðgeir Grímsson, Lei Gu, Dong Ren, and Tai-Ping Gao
Foss. Rec., 24, 445–453, https://doi.org/10.5194/fr-24-445-2022, https://doi.org/10.5194/fr-24-445-2022, 2022
Short summary
Short summary
We described the first xiphydriid wood wasp fossil, which extends the occurrence of Xiphydriidae into the mid-Cretaceous and adds to the known diversity of features in the family. In addition, the simplification of the wing venation and hypothesized host-plant affiliations of early xiphydriids are discussed based on the pollen of Cycadales preserved with the wasp.
Guido W. Grimm and Alastair J. Potts
Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016, https://doi.org/10.5194/cp-12-611-2016, 2016
Short summary
Short summary
We critically assess, for the first time since its inception in 1997, the theory behind the Coexistence Approach. This method has reconstructed purportedly accurate, often highly precise, palaeoclimates for a wide range of Cenozoic Eurasian localities. We argue that its basic assumptions clash with modern biological and statistical theory and that its modus operandi is fundamentally flawed. We provide guidelines on how to establish robust taxon-based palaeoclimate reconstruction methods.
Related subject area
Paleobiogeoscience: Climate Connection
The fossil bivalve Angulus benedeni benedeni: a potential seasonally resolved stable-isotope-based climate archive to investigate Pliocene temperatures in the southern North Sea basin
Relationship between extinction magnitude and climate change during major marine and terrestrial animal crises
Investigating controls of shell growth features in a foundation bivalve species: seasonal trends and decadal changes in the California mussel
Monsoonal forcing of cold-water coral growth off southeastern Brazil during the past 160 kyr
What was the source of the atmospheric CO2 increase during the Holocene?
Climate and marine biogeochemistry during the Holocene from transient model simulations
Plant functional diversity affects climate–vegetation interaction
High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea
Low Florida coral calcification rates in the Plio-Pleistocene
Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons
Aligning and synchronization of MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for DEEP core chronology
Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans)
An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations
Impact of CO2 and climate on Last Glacial maximum vegetation – a factor separation
Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions
An analysis of the contrasting fates of locust swarms on the plains of North America and East Asia
Process based model sheds light on climate sensitivity of Mediterranean tree-ring width
A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Kunio Kaiho
Biogeosciences, 19, 3369–3380, https://doi.org/10.5194/bg-19-3369-2022, https://doi.org/10.5194/bg-19-3369-2022, 2022
Short summary
Short summary
I found a good correlation between the mass extinction magnitudes of animals and surface temperature anomalies. The relation is good regardless of the difference between warming and cooling. Marine animals are more likely than tetrapods to become extinct under a habitat temperature anomaly. The extinction magnitudes are marked by abrupt global surface temperature anomalies and coincidental environmental changes associated with abrupt high-energy input by volcanism and impact.
Veronica Padilla Vriesman, Sandra J. Carlson, and Tessa M. Hill
Biogeosciences, 19, 329–346, https://doi.org/10.5194/bg-19-329-2022, https://doi.org/10.5194/bg-19-329-2022, 2022
Short summary
Short summary
The shell of the California mussel contains alternating dark and light calcium carbonate increments that record whether the shell was growing normally under optimal conditions (light) or slowly under sub-optimal conditions (dark). However, the timing and specific environmental controls of growth band formation have not been tested. We investigated these controls and found links between stable seawater temperatures and light bands and highly variable or extreme temperatures and dark bands.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Joachim Segschneider, Birgit Schneider, and Vyacheslav Khon
Biogeosciences, 15, 3243–3266, https://doi.org/10.5194/bg-15-3243-2018, https://doi.org/10.5194/bg-15-3243-2018, 2018
Short summary
Short summary
To gain a better understanding of climate and marine biogeochemistry variations over the last 9500 years (the Holocene), we performed non-accelerated model simulations with a global coupled climate and biogeochemistry model forced by orbital parameters and atmospheric greenhouse gases. One main outcome is an increase in the volume of the eastern equatorial Pacific oxygen minimum zone, driven by a slowdown of the large-scale circulation.
Vivienne P. Groner, Thomas Raddatz, Christian H. Reick, and Martin Claussen
Biogeosciences, 15, 1947–1968, https://doi.org/10.5194/bg-15-1947-2018, https://doi.org/10.5194/bg-15-1947-2018, 2018
Short summary
Short summary
We show that plant functional diversity significantly affects climate–vegetation interaction and the climate–vegetation system stability in response to external forcing using a series of coupled land–atmosphere simulation. Our findings raise the question of how realistically Earth system models can actually represent climate–vegetation interaction, considering the incomplete representation of plant functional diversity in the current generation of land surface models.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, James S. Klaus, Kevin Helmle, and Janice M. Lough
Biogeosciences, 13, 4513–4532, https://doi.org/10.5194/bg-13-4513-2016, https://doi.org/10.5194/bg-13-4513-2016, 2016
Short summary
Short summary
We have analysed the rate of calcification of fossil reef corals. These measurements are important, because the rate of formation of the skeleton depends on the physical environment in which the corals lived. The rates of skeletal calcification of the fossils were approximately 50 % lower than they are in extant reef corals. This is a likely effect of high water temperatures and/or low carbonate saturation of the water – factors that will also affect coral growth by future global warming.
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Janna Just, Norbert R. Nowaczyk, Leonardo Sagnotti, Alexander Francke, Hendrik Vogel, Jack H. Lacey, and Bernd Wagner
Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, https://doi.org/10.5194/bg-13-2093-2016, 2016
Short summary
Short summary
The magnetic record from Lake Ohrid reflects a strong change in geochemical conditions in the lake. Before 320 ka glacial sediments contain iron sulfides, while later glacials are dominated by siderite. Superimposed on this large-scale pattern are climatic induced changes in the magnetic mineralogy. Glacial and stadial sediments are characterized by relative increases of high- vs. low-coercivity minerals which relate to enhanced erosion in the catchment, possibly due to a sparse vegetation.
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
M. Claussen, K. Selent, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 10, 3593–3604, https://doi.org/10.5194/bg-10-3593-2013, https://doi.org/10.5194/bg-10-3593-2013, 2013
M.-N. Woillez, M. Kageyama, N. Combourieu-Nebout, and G. Krinner
Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, https://doi.org/10.5194/bg-10-1561-2013, 2013
G. Yu, X. Ke, H. D. Shen, and Y. F. Li
Biogeosciences, 10, 1441–1449, https://doi.org/10.5194/bg-10-1441-2013, https://doi.org/10.5194/bg-10-1441-2013, 2013
R. Touchan, V. V. Shishov, D. M. Meko, I. Nouiri, and A. Grachev
Biogeosciences, 9, 965–972, https://doi.org/10.5194/bg-9-965-2012, https://doi.org/10.5194/bg-9-965-2012, 2012
A. Sluijs and H. Brinkhuis
Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, https://doi.org/10.5194/bg-6-1755-2009, 2009
Cited articles
Barry, R. G. and Chorley, R. J.: Atmosphere, Weather, and Climate, Routledge, London, 472 pp., 2003.
Browicz, K.: Chorology of Trees and Shrubs in South-West Asia and Adjacent Regions, Vol. 5, Polish Scientific Publishers, Warsaw, Poznan, 88 pp., 1986.
Browicz, K. and Zieli\'nski, J.: Chorology of Trees and Shrubs in South-West Asia and Adjacent Regions, Vol. 1, Polish Scientific Publishers, Warsaw, Poznan, 172 pp., 1982.
Browicz, K. and Zieli\'nski, J.: Chorology of Trees and Shrubs in South-West Asia and Adjacent Regions. 10 vols, Polish Scientific Publishers, Poznan, 172; 183; 185; 179; 187; 186; 185; 185; 183; 100 pp., 1982–1994.
Browicz, K. and Zieli\'nski, J.: Chorology of Trees and Shrubs in South-West Asia and Adjacent Regions, Vol. 2, Polish Scientific Publishers, Warsaw, Poznan, 79 pp., 1984.
Cao, K.-F.: Fagus dominance in Chinese montane forests, Ph.D. thesis, Landbouw- en milieuwetenschappen Landbouwuniversiteit te Wageningen, Wageningen, 115 pp., 1995.
Denk, T. and Grimm, G. W.: The biogeographic history of beech trees, Rev. Palaeobot. Palynol., 158, 83–100, 2009a.
Denk, T. and Grimm, G. W.: Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae), Int. J. Plant Sci., 170, 926–940, 2009b.
Denk, T. and Grimm, G. W.: The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers, Taxon, 59, 351–366, 2010.
Denk, T., Frotzler, N., and Davitashvili, N.: Vegetational patterns and distribution of relict taxa in humid temperate forests and wetlands of Georgia (Transcaucasia), Biol. J. Linn. Soc., 72, 287–332, 2001.
Denk, T., Grimm, G. W., and Hemleben, V.: Patterns of molecular and morphological differentiation in Fagus: implications for phylogeny., Am. J. Bot., 92, 1006–1016, 2005a.
Denk, T., Grímsson, F., and Kvaček, Z.: The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography, Bot. J. Linn. Soc., 149, 369–417, 2005b.
Denk, T., Grímsson, F., and Zetter, R.: Episodic migration of oaks to Iceland – evidence for a North Atlantic "land bridge" in the latest Miocene, Am. J. Bot., 97, 276–287, 2010.
Denk, T., Grímsson, F., Zetter, R., and Símonarson, L. A.: Late Cainozoic Floras of Iceland: 15 Million Years of Vegetation and Climate History in the Northern North Atlantic., Topics in Geobiology, Springer, Heidelberg, New York, 854 pp., 2011.
Denk T., Güner H. T., and Grimm, G. W. From mesic to arid: Leaf epidermal features suggest preadaptation in Miocene dragon trees (Dracaena), Rev. Palaeobot. Palynol., 200, 211–228, 2014.
Driscoll, N. W. and Haug, G. H.: A short circuit in thermohaline circulation: A cause for Northern Hemisphere glaciation?, Science, 282, 436–438, 1998.
Duque-Caro, H.: Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway, Palaeogeogr. Palaeocl., 77, 203–234, 1990.
Fang, J., Wang, Z., and Tang, Z.: Atlas of Woody Plants in China. Volumes 1 to 3 and index, Higher Education Press, Beijing, 2009.
Farjon, A.: Pinaceae, Koeltz Scientific Books, Königstein, 330 pp., 1990.
Flora of China: Flora of China @ efloras.org, Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA, last accessed 10/02/2013, 2013.
Flower, B. P. and Kennett, J. P.: Middle Miocene deepwater paleoceanography in the southwest Pacific: relations with East Antarctic Ice Sheet development, Paleoceanography, 10, 1095–1112, 1995.
Frank, M., Backman, J., Jakobsson, M., Moran, K., O'Regan, M., King, J., Haley, B. A., Kubik, P. W., and Garbe-Schönberg, D.: Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years: Stratigraphic and paleoclimatic implications, Paleoceanography, 23, PA1S02, https://doi.org/10.1029/2007PA001478, 2008.
Friedrich, W. L. and Símonarson, L. A.: Acer-Funde aus dem Neogen von Island und ihre stratigraphische Stellung, Palaeontographica B, 182, 151–166, 1982.
Fronval, T. and Jansen, E.: Late Neogene paleoclimates and paleoceanography in the Iceland-Norwegian Sea: evidence from the Iceland and Vøring plateaus, Proceedings of the Ocean Drilling Program, Scientific Results, 151, 455–468, 1996.
Grichuk, V. P., Gurtovaya, Y. Y., Zelikson, E. M., and Borisova, O. K.: Methods and results of late Pleistocene paleoclimatic reconstructions., in: Late Quarternary environments of the Soviet Union, edited by: Velichko, A. A., Longman, London, 251–260, 1984.
Grimm, G. W. and Denk, T.: Reliability and resolution of the coexistence approach – A revalidation using modern-day data, Rev. Palaeobot. Palynol., 172, 33–47, 2012.
Grimm, G. W., Denk, T., and Hemleben, V.: Evolutionary history and systematic of Acer section Acer – a case study of low-level phylogenetics, Plant Syst. Evol., 267, 215–253, 2007.
Güner T. H. and Denk, T. The genus Mahonia in the Miocene of Turkey: Taxonomy and biogeographic implications, Rev. Palaeobot. Palynol., 175, 32–46, 2013.
Hardarson, B. S., Fitton, J. G., Ellam, R. M., and Pringle, M. S.: Rift relocation – a geochemical and geochronological investigation of a palaeo-rift in northwest Iceland, Earth Planet. Sci. Lett., 153, 181–196, 1997.
Haug, G. H. and Thiedemann, R.: Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation, Nature, 398, 673–676, 1998.
Hegi, G.: Illustrierte Flora von Mitteleuropa. Band IV, Teil 2b. Rosaceae, 2. Teil., 1st ed., Lehmann, München, 615 pp., 1923.
Hegi, G.: Illustrierte Flora von Mitteleuropa. Band VI, Teil 1. Dicotyledones, 5. Teil (Scrophulariaceae–Asteraceae), 1st ed., J. F. Lehmanns, München, 544 pp., 1928.
Hegi, G.: Illustrierte Flora von Mitteleuropa. Band V, Teil 1. Linaceae–Violaceae., 2nd ed., Paul Parey, Berlin, Hamburg, 688 pp., 1966a.
Hegi, G.: Illustrierte Flora von Mitteleuropa. Band IV, Teil 2a. Droseraceae–Rosaceae, 1. Teil., 2nd ed., Paul Parey, Berlin, Hamburg, 448 pp., 1966b.
Hegi, G.: Illustrierte Flora von Mitteleuropa. Band III, Teil 3. Nymphaeaceae–Ranunculaceae, 2nd ed., Paul Parey, Berlin, Hamburg, 364 pp., 1974.
Hegi, G.: Illustrierte Flora von Mitteleuropa. Band III, Teil 1. Juglandaceae–Polygonaceae., 3rd ed., Paul Parey, Berlin, Hamburg, 504 pp., 1981a.
Hegi, G.: Illustrierte Flora von Mitteleuropa. Band I, Teil 2. Ginkgoaceae–Scheuchzeriaceae., 3rd ed., Paul Parey, Berlin, Hamburg, 270 pp., 1981b.
Hegi, G.: Illustrierte Flora von Mitteleuropa. Band I, Teil 1. Pteridophyta., 3rd ed., Paul Parey, Berlin, Hamburg, 309 pp., 1984.
Iversen, J.: Viscum, Hedera, and Ilex as climate indicators. A contribution to the study of the post-glacial temperature climate, Geol. Fören. Stock. För., 66, 463–483, 1944.
Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O'Regan, M., Brinkhuis, H., King, J., and Moran, K.: The Early Miocene Onset of a Ventilated Circulation Regime in the Arctic Ocean, Nature, 447, 986–990, 2007.
Kaspi, Y. and Schneider, T.: Winter cold of eastern continental boundaries induced by warm ocean waters, Nature, 471, 621–625, 2011.
Keller, G. and Barron, J. A.: Paleoceanographic implications of the Miocene deep-sea hiatuses, Geol. Soc. Am. Bull., 94, 590–613, 1983.
Knies, J. and Gaina, C.: Middle Miocene ice sheet expansion in the Arctic: Views from the Barents Sea, Geochem. Geophy. Geosy., 9, Q02015, https://doi.org/10.1029/2007GC001824, 2008.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263, 2006.
Kristjansson, L., Hardarson, P. S., and Audunsson, H.: A detailed palaeomagnetic study of the oldest (≈ 15 Myr) lava sequences in Northwest Iceland, Geophys. J. Int., 155, 991–1005, 2003.
Köppen, W.: Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet, Meteorol. Z., 1, 215–226, 1884.
Köppen, W.: Das geographische System der Klimate, in: Handbuch der Klimatologie, Band 1, Teil C., edited by: Köppen, W. and Geiger, R., Gebr. Borntraeger, Berlin, 1–44, 1936.
Köppen, W. P. and Wegener, A.: Die Klimate der geologischen Vorzeit, Gebrüder Borntraeger, Berlin, Stuttgart, 255 pp., 1924.
Larsen, H. C., Saunders, A. D., Clift, P. D., Beget, J., Wei, W., and Spezzaferri, S.: Seven million years of glaciation in Greenland, Science, 264, 952–955, 1994.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hedenäs, L., Hemming, S. R., Johnson, J. V., Leng, M. J., Machlus, M. L., Newton, A. E., Raine, J. I., Willenbring, J. K., Williams, M., and Wolfe, A. P.: Mid-Miocene cooling and the extinction of tundra in continental Antarctica, P. Natl. Acad. Sci. USA, 105, 10676–10680, 2008.
Lieth, H., Berlekamp, J., Fuest, S., and Riediger, S.: Climate Diagram World Atlas on CD, Backhuys Publ. B. V., Leiden, 1999.
Mai, D. H.: Tertiäre Vegetationsgeschichte Europas, Gustav Fischer Verlag, Stuttgart, 691 pp., 1995.
Maycock, P. F.: The ecology of beech (Fagus grandifolia Ehrh.) forests of the deciduous forests of southeastern North America, and a comparison with the beech (Fagus crenata) forests of Japan, in: Vegetation in Eastern North America, edited by: Miyawaki, A., Iwatsuki, K., and Grandtner, M. M., University of Tokyo Press, Tokyo, 515, 1994.
McDougall, I., Kristjansson, L., and Saemundsson, K.: Magnetostratigraphy and Geochronology of Northwest Iceland, J. Geophys. Res., 89, 7029–7060, 1984.
McManus, F. J., Oppo, D. W., Keigwin, L. D., Cullen, J. L., and Bond, G. C.: Thermohaline circulation and prolonged interglacial warmth in the North Atlantic, Quatern. Res., 58, 17–21, 2002.
Montes, C., Bayona, G., Cardona, A., Buchs, D. M., Silva, C. A., Morón, S., Hoyos, N., Ramírez, D. A., Jaramillo, C. A., and Valencia, V.: Arc-continent collision and orocline formation: closing of the Central American seaway, J. Geophys. Res., 117, B04105, 2012.
Mosbrugger, V. and Utescher, T.: The coexistence approach – a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils, Palaeogeogr., Palaeocl., 134, 61–86, 1997.
Mullins, H. T., Gardulski, A. F., Wise, S. W., and Applegate, J.: Middle Miocene oceanographic event in the eastern Gulf of Mexico: implications for seismic stratigraphic succession and Loop Current/Gulf Stream circulation, Geol. Soc. Am. Bull., 98, 702–713, 1987.
Nisancioglu, K. H., Raymo, M. E., and Stone, P. H.: Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway, Paleoceanography, 18, 1006, https://doi.org/10.1029/2002PA000767, 2003.
Ohwi, J.: Flora of Japan, Smithsonian Institution, Washington, DC, 1067 pp., 1965.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Peters, R.: Beech forests, Geobotany, 24, 1–169, 1997.
Rubel, F. and Kottek, M.: Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification, Meteorol. Z., 19, 135–141, 2010.
Schroeder, G.-F.: Lehrbuch der Pflanzengeographie, Quelle & Meyer, Wiesbaden, 459 pp., 1998.
Seager, R., Battisti, D. S., Yin, J., Gordon, N., Naik, N., Clement, A. C., and Cane, M. A.: Is the Gulf Stream responsible for Europe's mild winters?, Q. J. Roy. Meteor. Soc., 128, 2536–2586, 2002.
Shen, C. F.: A monograph of the genus Fagus Thurn. ex L. (Fagaceae). Ph.D. thesis, City University of New York, New York, 1992.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion, Science, 305, 1766–1770, 2004.
Simeone, M. C., Piredda, R., Papini, A., Vessella, F., and Schirone, B.: Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogenetic implications, Bot. J. Linn. Soc., 172, 478–499, 2013.
St. John, K. E. K. and Krissek, L. A.: The late Miocene to Pleistocene ice-rafting history of southeast Greenland, Boreas, 31, 28–35, 2002.
Thiede, J., Winkler, A., Wolfwelling, T., Eldholm, O., Myhre, A. M., Baumann, K. H., Henrich, R., and Stein, R.: Late Cenozoic history of the polar North Atlantic – results from ocean drilling, Quaternary Sci. Rev. 17, 185–208, 1998.
Thompson, R. S., Anderson, K. H., and Bartlein, P. J.: Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America – Introduction and Conifers, U.S. Geological Survey Professional Paper, 1650–A, 1–269, 1999a.
Thompson, R. S., Anderson, K. H., and Bartlein, P. J.: Atlas of relations between climatic parameters and distribution of important trees and shrubs in North America – Hardwoods, US Geological Survey Professional Paper, 1650–B, 1-423, 1999b.
Thompson, R. S., Anderson, K. H., and Bartlein, P. J.: Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America – Additional conifers, hardwoods, and monocots, U.S. Geological Survey Professional Paper, 1650–C, 1–386, 2001.
Thompson, R. S., Anderson, K. H., Strickland, L. E., Shafer, S. L., Pelltier, R. T., and Bartlein, P. J.: Atlas of Relations Between Climatic Parameters and Distributions of Important Trees and Shrubs in North America–Alaska Species and Ecoregions, U.S. Geological Survey Professional Paper, 1650-D, 1–342, 2006.
Tiffney, B. H.: Phylogeography, fossils, and Northern Hemisphere biogeography: the role of physiological uniformitarianism, Ann. Mo. Bot. Garden, 95, 135–143, 2008.
Walter, H.: Vegetation of the Earth in relation to the climate and the eco-physiological conditions, Springer Verlag, New York, Heidelberg, Berlin, 237 pp., 1973.
Walter, H. and Lieth, H.: Klimadiagramm-Weltatlas, 1. Lieferung, VEB Gustav Fischer Verlag, Jena, s.n. pp., 1960.
Walter, H. and Lieth, H.: Klimadiagramme-Weltatlas. 2. Lieferung, VEB Gustav Fischer Verlag, Jena, s.n. pp., 1964.
Walther, H.: Studien über tertiäre Acer Mitteleuropas, Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 19, 1–309, 1972.
Wang, C.-W.: The Forests of China with a Survey of Grassland and Desert Vegetation, Maria Moors Cabot Foundation Publication, Harvard University, Cambridge, MA, 1961.
Wegener, A.: Die Entstehung der Kontinente und Ozeane, 4th ed., Friedr. Vieweg & Sohn Akt.-Ges., Braunschweig, 231 pp., 1929.
White, J. M., Ager, T. A., Adam, D. P., Leopold, E. B., Liu, G., Jetté, H., and Schweger, C. E.: An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global correlates, Palaeogeogr. Palaeocl., 130, 293–306, 1997.
Wolf-Welling, T. C. W., Cremer, M., O'Connell, S., Winkler, A., and Thiede, J.: Cenozoic Arctic Gateway paleoclimate variability: indications from changes in coarse-fraction composition, Proceedings of the Ocean Drilling Program, Scientific Results, 151, 515–567, 1996.
Wolfe, J. A.: A method of obtaining climatic parameters from leaf assemblages, U.S. Geol. Survey Bull., 2040, 1–73, 1993.
Wolfe, J. A.: An analysis of Neogene climates in Beringia, Palaeogeogr., Palaeocl., 108, 207–216, 1994.
Wolfe, J. A.: Paleoclimatic estimates from Tertiary leaf assemblages, Ann. Rev. Earth Planet. Sci., 23, 119–142, 1995.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, 2001.
Altmetrics
Final-revised paper
Preprint