Articles | Volume 10, issue 12
Research article
09 Dec 2013
Research article |  | 09 Dec 2013

Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation

Y. Song, A. K. Jain, and G. F. McIsaac

Abstract. Worldwide expansion of agriculture is impacting the earth's climate by altering carbon, water, and energy fluxes, but the climate in turn is impacting crop production. To study this two-way interaction and its impact on seasonal dynamics of carbon, water, and energy fluxes, we implemented dynamic crop growth processes into a land surface model, the Integrated Science Assessment Model (ISAM). In particular, we implemented crop-specific phenology schemes and dynamic carbon allocation schemes. These schemes account for light, water, and nutrient stresses while allocating the assimilated carbon to leaf, root, stem, and grain pools. The dynamic vegetation structure simulation better captured the seasonal variability in leaf area index (LAI), canopy height, and root depth. We further implemented dynamic root distribution processes in soil layers, which better simulated the root response of soil water uptake and transpiration. Observational data for LAI, above- and belowground biomass, and carbon, water, and energy fluxes were compiled from two AmeriFlux sites, Mead, NE, and Bondville, IL, USA, to calibrate and evaluate the model performance. For the purposes of calibration and evaluation, we use a corn–soybean (C4–C3) rotation system over the period 2001–2004. The calibrated model was able to capture the diurnal and seasonal patterns of carbon assimilation and water and energy fluxes for the corn–soybean rotation system at these two sites. Specifically, the calculated gross primary production (GPP), net radiation fluxes at the top of the canopy, and latent heat fluxes compared well with observations. The largest bias in model results was in sensible heat flux (SH) for corn and soybean at both sites. The dynamic crop growth simulation better captured the seasonal variability in carbon and energy fluxes relative to the static simulation implemented in the original version of ISAM. Especially, with dynamic carbon allocation and root distribution processes, the model's simulated GPP and latent heat flux (LH) were in much better agreement with observational data than for the static root distribution simulation. Modeled latent heat based on dynamic growth processes increased by 12–27% during the growing season at both sites, leading to an improvement in modeled GPP by 13–61% compared to the estimates based on the original version of the ISAM.

Please read the corrigendum first before accessing the article.


The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Final-revised paper