Articles | Volume 11, issue 10
https://doi.org/10.5194/bg-11-2809-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-2809-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?
S. Bindschedler
Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, 1015 Lausanne, Switzerland
present address: Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009, Switzerland
G. Cailleau
Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, 1015 Lausanne, Switzerland
O. Braissant
Laboratory of Biomechanics and Biocalorimetry, Biozentrum/Pharmazentrum, University of Basel, Klingelbergstr. 50–70, 4056 Basel, Switzerland
L. Millière
Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, 1015 Lausanne, Switzerland
present address: Institut für Mineralogie, Universität Münster, Corrensstr. 24, 48149 Münster, Germany
D. Job
Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2009, Switzerland
E. P. Verrecchia
Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, 1015 Lausanne, Switzerland
Related authors
Camille Rieder, Eric P. Verrecchia, Saskia Bindschedler, Guillaume Cailleau, Aviram Rozin, Munisamy Anbarashan, Shubhendu Dasgupta, Thomas Junier, Nicolas Roeschli, Pascal Vittoz, and Mike C. Rowley
EGUsphere, https://doi.org/10.5194/egusphere-2025-3388, https://doi.org/10.5194/egusphere-2025-3388, 2025
Short summary
Short summary
The oxalate-carbonate pathway, where trees and microbes store inorganic carbon as minerals was studied on four tree species of the threatened tropical dry evergreen forest Indian forest. We used high-throughput sequencing of a gene to detect oxalate-degrading microbes. For all tree species, produced oxalate led to carbonate formation in soils and on wood. This carbon may be leached into water, suggesting a hidden source of inorganic carbon with implications for climate and conservation.
Camille Rieder, Eric P. Verrecchia, Saskia Bindschedler, Guillaume Cailleau, Aviram Rozin, Munisamy Anbarashan, Shubhendu Dasgupta, Thomas Junier, Nicolas Roeschli, Pascal Vittoz, and Mike C. Rowley
EGUsphere, https://doi.org/10.5194/egusphere-2025-3388, https://doi.org/10.5194/egusphere-2025-3388, 2025
Short summary
Short summary
The oxalate-carbonate pathway, where trees and microbes store inorganic carbon as minerals was studied on four tree species of the threatened tropical dry evergreen forest Indian forest. We used high-throughput sequencing of a gene to detect oxalate-degrading microbes. For all tree species, produced oxalate led to carbonate formation in soils and on wood. This carbon may be leached into water, suggesting a hidden source of inorganic carbon with implications for climate and conservation.
Cited articles
Alonso-Zarza, A. M. and Jones, B.: Root calcrete formation on Quaternary karstic surfaces of Grand Cayman, Geol. Acta, 5, 77–88, 2007.
Anand, R. R., Phang, C., Wildman, J. E., and Lintern, M. J.: Genesis of some calcretes in the southern Yilgarn Craton, Western Australia: Implications for mineral exploration, Aust. J. Earth Sci., 44, 87–103, 1997.
Aronson, J. M. and Preston, R. D.: An electron microscopic and X-ray analysis of the walls of selected lower phycomycetes, P. Roy. Soc. Lond. B Bio., 152, 346–352, 1960.
Bajnóczi, B. and Kovács-Kis, V.: Origin of pedogenic needle-fiber calcite revealed by micromorphology and stable isotope composition – A case study of a Quaternary paleosol from Hungary, Chem. Erde-Geochem., 66, 203–212, 2006.
Banerjee, S. and Joshi, S. R.: Insights into cave architecture and the role of bacterial biofilm, P. Natl. A. Sci. India B, 83, 277–290, 2013.
Bartnicki-García, S.: Cell wall chemistry, morphogenesis and taxonomy of fungi, Annu. Rev. Microbiol., 22, 87–108, 1968.
Benzerara, K., Menguy, N., Guyot, F., Dominici, C., and Gillet, P.: Nanobacteria-like calcite single crystals at the surface of the Tataouine meteorite, P. Natl. Acad. Sci. USA, 100, 7438–7442, 2003.
Benzerara, K., Menguy, N., Guyot, F., Vanni, C., and Gillet, P.: TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling, Geochim. Cosmoschim. Ac., 69, 1413–1422, 2005.
Berman, A., Hanson, J., Leiserowitz, L., Koetzle, T. F., Weiner, S., and Addadi, L.: Biological-control of crystal texture – A widespread strategy for adapting crystal properties to function, Science, 259, 776–779, 1993.
Bindschedler, S., Millière, L., Cailleau, G., Job, D., and Verrecchia, E. P.: Calcitic nanofibres in soils and caves: A putative fungal contribution to carbonatogenesis, in: Tufas and Speleothems – Unravelling the Microbial and physical controls, edited by: Pedley, H. M. and Rogerson, M., Geol. Soc. SP., London, 225–238, 2010.
Bindschedler, S., Millière, L., Cailleau, G., Job, D., and Verrecchia, E. P.: An ultrastructural approach to analogies between fungal structures and needle fibre calcite, Geomicrobiol J, 29, 301–313, 2012.
Blyth, A. J. and Frisia, S.: Molecular evidence for bacterial mediation of calcite formation in cold high-altitude caves, Geomicrobiol J., 25, 101–111, 2008.
Boquet, E., Bordonat, A., and Ramos Cormenzana, A.: Production of calcite crystals by soil bacteria is a general phenomenon, Nature, 246, 527–528, 1973.
Borsato, A., Frisia, S., Jones, B., and Van der Borg, K.: Calcite moonmilk: Crystal morphology and environment of formation in caves in the Italian Alps, J. Sediment. Res., 70, 1171–1182, 2000.
Bowman, S. M. and Free, S. J.: The structure and synthesis of the fungal cell wall, BioEssays, 28, 799–808, 2006.
Braissant, O., Cailleau, G., Aragno, M., and Verrecchia, E. P.: Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment, Geobiology, 2, 59-66, 2004.
Braissant, O., Decho, A. W., Przekop, K. M., Gallagher, K. L., Glunk, C., Dupraz, C., and Visscher, P. T.: Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat, FEMS Microbiol. Ecol., 67, 293–307, 2009.
Buckley, H. E.: Crystal growth, Wiley and Sons/Chapman and Hall, New York/London, 571 pp., 1951.
Burnett, J. H.: Aspects of the structure and growth of hyphal walls, in: Fungal walls and hyphal growth, edited by: Burnett, J. H., and Trinci, A. P. J., British Mycological Society, Cambridge University Press, Cambridge, 1–25, 1979.
Cailleau, G., Braissant, O., Dupraz, C., Aragno, M., and Verrecchia, E. P.: Biologically induced accumulations of CaCO3 in orthox soils of Biga, Ivory Coast, Catena, 59, 1–17, 2005.
Cailleau, G., Dadras, M., Abolhassani-Dadras, S., Braissant, O., and Verrecchia, E. P.: Evidence for an organic origin of pedogenic calcitic nanofibres, J Cryst Growth, 311, 2490–2495, 2009a.
Cailleau, G., Verrecchia, E. P., Braissant, O., and Emmanuel, L.: The biogenic origin of needle fibre calcite, Sedimentology, 56, 1858–1875, 2009b.
Callot, G., Guyon, A., and Mousain, D.: Relation between calcite needles and fungal hyphae in the soil, Agronomie, 5, 209–216, 1985a.
Callot, G., Mousain, D., and Plassard, C.: Concentration of calcium-carbonate on the walls of fungal hyphae, Agronomie, 5, 143–150, 1985b.
Cañaveras, J. C., Hoyos, M., Sanchez-Moral, S., Sanz-Rubio, E., Bedoya, J., Soler, V., Groth, I., Schumann, P., Laiz, L., Gonzalez, I., and Saiz-Jimenez, C.: Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, northern Spain), Geomicrobiol. J., 16, 9–25, 1999.
Cañaveras, J., Sanchez-Moral, S., Soler, V., and Saiz-Jimenez, C.: Microorganisms and microbially induced fabrics in cave walls, Geomicrobiol. J., 18, 223–240, 2001.
Cañaveras, J. C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L., Gonzalez, J. M., and Saiz-Jimenez, C.: On the origin of fiber calcite in moonmilk deposits, Naturwissenschaften, 93, 27–32, 2006.
Carlile, M. J., Watkinson, S. C., and Gooday, G. W.: The Fungi, Elsevier academic press, 588 pp., 2001.
Chesters, C. G. and Bull, A. T.: Enzymic degradation of laminarin, 3. Some effects of temperature, pH and various chemical reagents on fungal laminarinases, Biochem J, 86, 38–46, 1963.
Coleman, D. C., Crossley Jr., D. A., and Hendrix, P. F.: Fundamentals of soil ecology, 2nd Edn., Elsevier Academic Press, 386 pp., 2004.
Cromme, P., Zollfrank, C., Muller, L., Muller, F. A., and Greil, P.: Biomimetic mineralisation of apatites on Ca2+ activated cellulose templates, Mat. Sci. Eng. C-Bio. S., 27, 1–7, 2007.
Curry, M. D., Boston, P. J., Spilde, M. N., Baichtal, J. F., and Campbell, A. R.: Cottonballs, a unique subaqueous moonmilk, and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska, Int. J. Speleol., 38, 111–128, 2009.
Dalas, E., Klepetsanis, P. G., and Koutsoukos, P. G.: Calcium carbonate deposition on cellulose, J. Colloid. Interf. Sci., 224, 56–62, 2000.
Dey, S., Basu Baul, T. S., Roy, B., and Dey, D.: A new rapid method of air-drying for scanning electron microscopy using tetramethylsilane, J. Microsc., 156, 259–261, 1989.
Dubroeucq, D., Geisseirt, D., and Roger, P.: Pine Root-induced petrocalcic horizons in volcanis ash soils of the Mexican altiplano, Memorias del III Simposio Internacional sobre Suelos volcanicos endurecidos (Quito), 1996.
Dupraz, C. and Visscher, P.T.: Microbial lithification in marine stromatolites and hypersaline mats, Trends Microbiol, 13, 429–438, 2005.
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., and Visscher, P. T.: Processes of carbonate precipitation in modern microbial mats, Earth-Sci. Rev., 96, 141–162, 2009.
Ehrlich, H.: Chitin and collagen as universal and alternative templates in biomineralization, Int. Geol. Rev., 52, 661–699, 2010.
Fan, P. P. and Guo, D. L.: Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil, Oecologia, 163, 509–515, 2010.
Farkaš, V.: Biosynthesis of cell-walls of fungi, Microbiol. Rev., 43, 117–144, 1979.
Farkaš, V.: Structure and biosynthesis of fungal cell walls: Methodological approaches, Folia. Microbiol., 48, 469–478, 2003.
Folk, R. L.: SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks, J. Sediment. Petrol., 63, 990–999, 1993.
Folk, R. L. and Lynch, F. L.: Organic matter, putative nannobacteria and the formation of ooids and hardgrounds, Sedimentology, 48, 215–229, 2001.
Fontaine, T., Mouyna, I., Hartland, R. P., Paris, S., and Latgé, J. P.: From the surface to the inner layer of the fungal cell wall, Biochem. Soc. T., 25, 194–199, 1997.
Fontaine, T., Simenel, C., Dubreucq, G., Adam, O., Delepierre, M., Lemoine, J., Vorgias, C. E., Diaquin, M., and Latgé, J.-P.: Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall, J. Biol. Chem., 275, 27594–27607, 2000.
Furlan, L., deFavere, V. T., and Laranjeira, M. C. M.: Adsorption of calcium ions by graft copolymer of acrylic acid on biopolymer chitin, Polymer, 37, 843–846, 1996.
Gillet, P., Barrat, J. A., Heulin, Th., Achouak, W., Lesourd, M., Guyot, F., and Benzerara, K.: Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks, Earth Planet. Sc. Lett., 175, 161–167, 2000.
Giraud-Guille, M. M., Belamie, E., and Mosser, G.: Organic and mineral networks in carapaces, bones and biomimetic materials, C. R. Palevol, 3, 503–513, 2004.
Gobat, J.-M., Aragno, M., and Matthey, W.: Le sol vivant, Presses polytechniques et universitaires romandes, 568 pp., 2003.
Gradzi\'nski, M.: Microbial agents of moonmilk calcification, Proceedings of the 12th International Congress of Speleology, La Chaux-de-Fonds, Switzerland, 1, 275–278, 1997.
Gradzi\'nski, M., Chmiel, M. J., and Motyka, J.: Formation of calcite by chemolithoautotrophic bacteria – a new hypothesis, based on microcrystalline cave pisoids, Ann. Soc. Geol Pol., 82, 361–369, 2012.
Guggenberger, G., Frey, S. D., Six, J., Paustian, K., and Elliott, E. T.: Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems, Soil. Sci. Soc. Am. J., 63, 1188–1198, 1999.
Homeijer, S. J., Olszta, M. J., Barrett, R. A., and Gower, L. B.: Growth of nanofibrous barium carbonate on calcium carbonate seeds, J. Cryst. Growth, 310, 2938–2945, 2008.
Hunsley, D. and Burnett, J. H.: Ultrastructural architecture of walls of some hyphal fungi, J. Gen. Microbiol., 62, 203–218, 1970.
IUSS Working Group WRB: World references base for resources 2006, 2nd ed, Rome, 2006.
Iwanoff, L. L.: Ein wasserhaltiges Calcium Carbonat aussen Umbegung von Nowo-Alexandria (guv. Lublin), Annalen der Geologie und Mineralogie der Russland, 8, 23–25, 1906.
Jeong, G. Y. and Chun, Y. S.: Nanofiber calcite in Asian dust and its atmospheric roles, Geophys. Res. Lett., 33, L24802, https://doi.org/10.1029/2006GL028280, 2006.
Jones, B. and Khale, C. F.: Morphology, relationship, and origin of fiber and dendrite calcite crystals, J. Sediment. Petrol., 63, 1018–1031, 1993.
Jones, B. and Ng, K. C.: The structure and diagenesis of rhizoliths from Cayman Brac, British-West-Indies, J. Sediment. Petrol., 58, 457–467, 1988.
Kellermeier, M., Melero-García, E., Kunz, W., and García-Ruiz, J. M.: The ability of silica to induce biomimetic crystallization of calcium carbonate, in: Kinetics and thermodynamics of multistep nucleation and self-assembly in nanoscale materials: Advances in chemical physics, edited by: Nicolis, G., and Maes, D., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012.
Khormali, F., Abtahi, A., and Stoops, G.: Micromorphology of calcitic features in highly calcareous soils of Fars Province, Southern Iran, Geoderma, 132, 31–46, 2006.
Kieft, T. L.: Size matters: dwarf cells in soil and subsurface terrestrial environments, in: Nonculturable microorganisms in the environment, edited by: Colwell, R. R., and Grimes, D. J., ASM Press, Washington, DC, 19–46, 2000.
Kirkland, B. L., Lynch, F. L., Rahnis, M. A., Folk, R. L., Molineux, I. J., and McLean, R. J. C.: Alternative origins for nannobacteria-like objects in calcite, Geology, 27, 347–350, 1999.
Klappa, C.: Calcified filaments in Quaternary calcretes: organo-mineral interactions in the subaerial vadose environment, J. Sediment. Petrol., 49, 955–968, 1979.
Latgé, J.-P.: The cell wall: a carbohydrate armour for the fungal cell, Mol Microbiol, 66, 279–290, 2007.
Loisy, C., Verrecchia, E. P., and Dufour, P.: Microbial origin for pedogenic micrite associated with a carbonate paleosol (Champagne, France), Sediment. Geol., 126, 193–204, 1999.
Lowenstam, H. A. and Weiner, S.: On biomineralization, Oxford University Press, New York, 1989.
Maniloff, J., Nealson, K. H., Psenner, R., Loferer, M., and Folk, R. L.: Nannobacteria: Size limits and evidence, Science, 276, 1776–1776, 1997.
Mann, S.: The chemistry of form, Angew Chem-Int Edit, 39, 3393–3406, 2000.
Manoli, F., Koutsopoulos, S., and Dalas, E.: Crystallization of calcite on chitin, J. Cryst. Growth, 182, 116–124, 1997.
Martel, J. and Young, J. D.-E.: Purpoted nanobacteria in human blood as calcium carbonate nanoparticles, P. Natl. Acad. Sci. USA, 105, 5549–5554, 2008.
Marx, D. H. and Bryan, W. C.: Influence of ectimycorrhizae on survival and growth of aseptic seedlings of loblolly pine at high temperature, Forest Sci., 17, 37–41, 1971.
Millière, L., Hasinger, O., Bindschedler, S., Cailleau, G., Spangenberg, J. E., and Verrecchia, E. P.: Stable carbon and oxygen isotope signatures of pedogenic needle fibre calcite, Geoderma, 161, 74–87, 2011a.
Millière, L., Spangenberg, J. E., Bindschedler, S., Cailleau, G., and Verrecchia, E. P.: Reliability of stable carbon and oxygen isotope compositions of pedogenic needle fibre calcite as environmental indicators: examples from Western Europe, Isot. Environ. Healt S., 47, 341–358, 2011b.
Mügge, O.: über die Lublinit genannte, augeblich neue Modification des kohlensauren Kalkes, Zbl. Mineral. Geol. Pal., 1914, 673–675, 1914.
Newman, B. D., Norman, D. I., Gundimeda, M., and Levy, S. S.: Understanding the genesis of nonmarine calcite deposits through quadrupole mass spectrometric analysis of fluid inclusion gases, Chem. Geol., 132, 205–213, 1996.
Olszta, M. J., Gajjeraman, S., Kaufman, M., and Gower, L. B.: Nanofibrous calcite synthesized via a solution-precursor-solid mechanism, Chem. Mater., 16, 2355–2362, 2004.
Ould Mohamed, S. and Bruand, A.: Morphology and origin of secondary calcite in soils from Beauce, France, IX International Working Meeting on Soil Micromorphology, Townsville, Australia, 1994.
Pacton, M. and Gorin, G. G.: Nan(n)obacteria, in: Encyclopedia of Geobiology, edited by: Reitner, J., and Thiel, V., Springer, Dordrecht, The Netherlands, 677–680, 2011.
Paul, E. A.: Soil microbiology, ecology and biochemistry, edited by: Paul, E. A., Academic Press, San Diego, 532 pp., 2007.
Pearson, V. K., Kearsley, A. T., and Sephton, M. A.: The in-situ detection of organic material in extraterrestrial samples, Microsc. Anal., 5–8, 2004.
Perry, R. S., McLoughlin, N., Lynne, B. Y., Sephton, M. A., Oliver, J. D., Perry, C. C., Campbell, K., Engel, M. H., Farmer, J. D., Brasier, M. D., and Staley, J. T.: Defining biominerals and organominerals: Direct and indirect indicators of life, Sediment. Geol., 201, 157–179, 2007.
Phillips, S. E. and Self, P. G.: Morphology, crystallography and origin of needle-fiber calcite in Quaternary pedogenic calcretes of South-Australia, Aust. J. Soil. Res., 25, 429–444, 1987.
Phillips, S. E., Milnes, A. R., and Foster, R. C.: Calcified filaments – an example of biological influences in the formation of calcrete in South-Australia, Aust. J. Soil. Res., 25, 405–428, 1987.
R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2010.
Rapp, P.: 1,3-beta-glucanase, 1,6-beta-glucanase and beta-glucosidase activities of Sclerotium glucanicum - Synthesis and properties, J. Gen. Microbiol., 135, 2847–2858, 1989.
Richter, D. K., Immenhauser, A., and Neuser, R. D.: Electron backscatter diffraction documents randomly orientated c-axes in moonmilk calcite fibres: evidence for biologically induced precipitation, Sedimentology, 55, 487–497, 2008.
Ruiz-Herrera, J.: Fungal cell wall: structure, synthesis and assembly, CRC Press, Boca Raton, Florida, 248 pp., 1992.
Schieber, J. and Arnott, H. J.: Nannobacteria as a by-product of enzyme-driven tissue decay, Geology, 31, 717–720, 2003.
Shankar, N. and Achyuthan, H.: Genesis of calcic and petrocalcic horizons from Coimbatore, Tamil Nadu: Micromorphology and geochemical studies, Quatern. Int., 175, 140–154, 2007.
Simkiss, K. and Wilbur, K. M.: Biomineralization, cell biology and mineral deposition, Academic Press Inc., San Diego, 1989.
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak, D. R., and Zeglin, L. H.: Stoichiometry of soil enzyme activity at global scale, Ecol. Lett., 11, 1252–1264, 2008.
Stoops, G. J.: On the nature of "lublinite" from Hollanta (Turkey), Am Mineral, 61, p. 172, 1976.
Strong, G. E., Giles, J. R. A., and Wright, V. P.: A Holocene calcrete from North-Yorkshire, England – Implications for interpreting paleoclimates using calcretes, Sedimentology, 39, 333–347, 1992.
Turner, B. L.: Variation in pH optima of hydrolytic enzyme activities in tropical Rain Forest soils, Appl Environ Microb, 76, 6485–6493, 2010.
Turner, B. R. and Makhlouf, I.: Quaternary sandstones, northeast Jordan: Age, depositional environments and climatic implications, Palaeogeogr. Palaeocl., 229, 230–250, 2005.
Vergès, V., Madon, M., Bruand, A., and Bocquier, G.: Morphologie et cristallogenèse de microcristaux supergènes de calcite en aiguilles, Bulletin de Minéralogie, 105, 351–356, 1982.
Verrecchia, E. P. and Verrecchia, K. E.: Needle-fiber calcite: A critical review and a proposed classification, J Sediment Res A, 64, 650–664, 1994.
Verrecchia, E. P. and Dumont, J. L.: A biogeochemical model for chalk alteration by fungi in semiarid environments, Biogeochemistry, 35, 447–470, 1996.
Visscher, P. T. and Stolz, J. F.: Microbial mats as bioreactors: populations, processes, and products, Palaeogeogr Palaeocl, 219, 87–100, 2005.
Wainwright, S. A.: Skeletal organization in coral, Pocillopora damicornis, Q. J. Microsc. Sci., 104, 169–183, 1963.
Webster, J. and Weber, R.: Introduction to Fungi, Cambridge University Press, 841 pp., 2007.
Weiner, S. and Dove, P. M.: An overview of biomineralization processes and the problem of the vital effect, in: Biomineralization, edited by: Dove, P. M., DeYoreo, J. J., and Weiner, S., Rev. Mineral. Geochem., 1–29, 2003.
Wright, V. P.: The Significance of Needle-Fiber Calcite in a lower Carboniferous palaeosol, Geol. J., 19, 23–32, 1984.
Wright, V. P.: The role of fungal biomineralization in the formation of early Carboniferous soil fabrics, Sedimentology, 33, 831–838, 1986.
Young, J. D, Martel, J., Young, L., Wu, C.-Y., Young., A, and Young, D.: Putative nanobacteria represent physiological remnants and culture by products of normal calcium homeostasis, PLoS ONE, 4, e4417, https://doi.org/10.1371/journal.pone.0004417, 2009.
Zhou, J. and Chafetz, H. S.: Biogenic caliches in Texas: the role of organisms and effect of climate, Sediment. Geol., 222, 207–225, 2009.
Zhu, J. H., Song, J. M., Yu, S. H., Zhang, W. Q., and Shi, J. X.: Mineralization for micropatterned growth of carbonate nanofibers, Crystengcomm, 11, 539–541, 2009.
Altmetrics
Final-revised paper
Preprint