Articles | Volume 11, issue 20
Biogeosciences, 11, 5909–5930, 2014

Special issue: Current biogeochemical and ecosystem research in the Northern...

Biogeosciences, 11, 5909–5930, 2014

Research article 30 Oct 2014

Research article | 30 Oct 2014

Surface circulation and upwelling patterns around Sri Lanka

A. de Vos1,2,3, C. B. Pattiaratchi1, and E. M. S. Wijeratne1 A. de Vos et al.
  • 1School of Civil, Environmental and Mining Engineering & The UWA Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
  • 2The Centre for Ocean Health, The University of California Santa Cruz, CA 95060, USA
  • 3The Sri Lankan Blue Whale Project, 131 W.A.D. Ramanayake Mawatha, Colombo 2, Sri Lanka

Abstract. Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean, with the Arabian Sea on its western side and the Bay of Bengal on its eastern side, and experiences bi-annually reversing monsoon winds. Aggregations of blue whale (Balaenoptera musculus) have been observed along the southern coast of Sri Lanka during the northeast (NE) monsoon, when satellite imagery indicates lower productivity in the surface waters. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and numerical simulations using the Regional Ocean Modelling System (ROMS). The model was run for 3 years to examine the seasonal and shorter-term (~10 days) variability. The results reproduced correctly the reversing current system, between the Equator and Sri Lanka, in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the southwest (SW) monsoon transporting 11.5 Sv (mean over 2010–2012) and the westward flowing Northeast Monsoon Current (NMC) transporting 9.6 Sv during the NE monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the southern coast. During the SW monsoon, the island deflects the eastward flowing SMC southward, whilst along the eastern coast, the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the southern coast, resulting from southward flow converging along the southern coast and subsequent divergence associated with the offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the upwelling centre was dependent on the relative strengths of wind-driven flow along the eastern and western coasts: during the SW (NE) monsoon, the flow along the western (eastern) coast was stronger, migrating the upwelling centre to the east (west).

Final-revised paper