Articles | Volume 11, issue 24
https://doi.org/10.5194/bg-11-7349-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-7349-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Processes determining the marine alkalinity and calcium carbonate saturation state distributions
B. R. Carter
CORRESPONDING AUTHOR
Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA
J. R. Toggweiler
Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, P.O. Box 308, Princeton NJ, 08542, USA
R. M. Key
Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA
J. L. Sarmiento
Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA
Viewed
Total article views: 6,867 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Jul 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,695 | 1,955 | 217 | 6,867 | 123 | 134 |
- HTML: 4,695
- PDF: 1,955
- XML: 217
- Total: 6,867
- BibTeX: 123
- EndNote: 134
Total article views: 5,919 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Dec 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,168 | 1,556 | 195 | 5,919 | 119 | 128 |
- HTML: 4,168
- PDF: 1,556
- XML: 195
- Total: 5,919
- BibTeX: 119
- EndNote: 128
Total article views: 948 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Jul 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
527 | 399 | 22 | 948 | 4 | 6 |
- HTML: 527
- PDF: 399
- XML: 22
- Total: 948
- BibTeX: 4
- EndNote: 6
Cited
33 citations as recorded by crossref.
- Labechiid stromatoporoids from the Middle Ordovician Machiakou Formation of North China and their implications for the early development of stromatoporoids J. Jeon et al. 10.1080/03115518.2022.2130978
- Ocean Alkalinity, Buffering and Biogeochemical Processes J. Middelburg et al. 10.1029/2019RG000681
- Decoupling of carbon burial from productivity in the northeast Indian Ocean R. Saraswat et al. 10.1016/j.scitotenv.2024.174587
- Calcium carbonate dissolution patterns in the ocean O. Sulpis et al. 10.1038/s41561-021-00743-y
- A global monthly climatology of total alkalinity: a neural network approach D. Broullón et al. 10.5194/essd-11-1109-2019
- Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship‐based Hydrographic Investigations Program sections P16 and P02 B. Carter et al. 10.1002/2016GB005485
- Freshening of the western Arctic negates anthropogenic carbon uptake potential R. Woosley & F. Millero 10.1002/lno.11421
- Contrasting marine carbonate systems in two fjords in British Columbia, Canada: Seawater buffering capacity and the response to anthropogenic CO2 invasion A. Hare et al. 10.1371/journal.pone.0238432
- Assessing Sedimentary Boundary Layer Calcium Carbonate Precipitation and Dissolution Using the Calcium Isotopic Composition of Pore Fluids D. James et al. 10.3389/feart.2021.601194
- Locally interpolated alkalinity regression for global alkalinity estimation B. Carter et al. 10.1002/lom3.10087
- Shallow Calcium Carbonate Cycling in the North Pacific Ocean A. Subhas et al. 10.1029/2022GB007388
- Global distribution of modern shallow-water marine carbonate factories: a spatial model based on environmental parameters M. Laugié et al. 10.1038/s41598-019-52821-2
- Seasonal changes in seawater calcium and alkalinity in the Sargasso Sea and across the Bermuda carbonate platform A. Griffin et al. 10.1016/j.marchem.2021.104064
- Understanding the Seasonality, Trends, and Controlling Factors of Indian Ocean Acidification Over Distinctive Bio‐Provinces K. Madkaiker et al. 10.1029/2022JG006926
- Constraining CaCO3 Export and Dissolution With an Ocean Alkalinity Inverse Model H. Liang et al. 10.1029/2022GB007535
- Preformed Properties for Marine Organic Matter and Carbonate Mineral Cycling Quantification B. Carter et al. 10.1029/2020GB006623
- Excess pCO2 and carbonate system geochemistry in surface seawater of the exclusive economic zone of Qatar (Arabian Gulf) C. Izumi et al. 10.1016/j.marchem.2022.104185
- Solid State Sensor for Simultaneous Measurement of Total Alkalinity and pH of Seawater E. Briggs et al. 10.1021/acssensors.7b00305
- Mid–Late Ordovician tetradiid–calcimicrobial–cement reef: A new, peculiar reef-building consortium recording global cooling J. Lee & D. Lee 10.1016/j.gloplacha.2021.103462
- Marine carbonate factories: a global model of carbonate platform distribution J. Michel et al. 10.1007/s00531-019-01742-6
- Controls on surface water carbonate chemistry along North American ocean margins W. Cai et al. 10.1038/s41467-020-16530-z
- Climatological distribution of aragonite saturation state in the global oceans L. Jiang et al. 10.1002/2015GB005198
- When can ocean acidification impacts be detected from decadal alkalinity measurements? B. Carter et al. 10.1002/2015GB005308
- A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean G. Battaglia et al. 10.5194/bg-13-2823-2016
- The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle A. Planchat et al. 10.5194/bg-20-1195-2023
- Spatial Variation in Aragonite Saturation State and the Influencing Factors in Jiaozhou Bay, China Y. Li et al. 10.3390/w12030825
- Current CaCO3dissolution at the seafloor caused by anthropogenic CO2 O. Sulpis et al. 10.1073/pnas.1804250115
- Fusulinid-bearing oolites from the Tengchong Block in western Yunnan, SW China: Early Permian warming signal in the eastern peri-Gondwana H. Huang et al. 10.1016/j.jseaes.2020.104307
- Cold-water corals in the Subpolar North Atlantic Ocean exposed to aragonite undersaturation if the 2 °C global warming target is not met M. García-Ibáñez et al. 10.1016/j.gloplacha.2021.103480
- Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms L. Xue & W. Cai 10.1016/j.marchem.2020.103791
- Eelgrass beds can mitigate local acidification and reduce oyster malformation risk in a subarctic lagoon, Japan: A three-dimensional ecosystem model study H. Abe et al. 10.1016/j.ocemod.2022.101992
- Alkalinity sources in the Dutch Wadden Sea M. Norbisrath et al. 10.5194/os-20-1423-2024
- A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean G. Battaglia et al. 10.5194/bgd-12-20223-2015
32 citations as recorded by crossref.
- Labechiid stromatoporoids from the Middle Ordovician Machiakou Formation of North China and their implications for the early development of stromatoporoids J. Jeon et al. 10.1080/03115518.2022.2130978
- Ocean Alkalinity, Buffering and Biogeochemical Processes J. Middelburg et al. 10.1029/2019RG000681
- Decoupling of carbon burial from productivity in the northeast Indian Ocean R. Saraswat et al. 10.1016/j.scitotenv.2024.174587
- Calcium carbonate dissolution patterns in the ocean O. Sulpis et al. 10.1038/s41561-021-00743-y
- A global monthly climatology of total alkalinity: a neural network approach D. Broullón et al. 10.5194/essd-11-1109-2019
- Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship‐based Hydrographic Investigations Program sections P16 and P02 B. Carter et al. 10.1002/2016GB005485
- Freshening of the western Arctic negates anthropogenic carbon uptake potential R. Woosley & F. Millero 10.1002/lno.11421
- Contrasting marine carbonate systems in two fjords in British Columbia, Canada: Seawater buffering capacity and the response to anthropogenic CO2 invasion A. Hare et al. 10.1371/journal.pone.0238432
- Assessing Sedimentary Boundary Layer Calcium Carbonate Precipitation and Dissolution Using the Calcium Isotopic Composition of Pore Fluids D. James et al. 10.3389/feart.2021.601194
- Locally interpolated alkalinity regression for global alkalinity estimation B. Carter et al. 10.1002/lom3.10087
- Shallow Calcium Carbonate Cycling in the North Pacific Ocean A. Subhas et al. 10.1029/2022GB007388
- Global distribution of modern shallow-water marine carbonate factories: a spatial model based on environmental parameters M. Laugié et al. 10.1038/s41598-019-52821-2
- Seasonal changes in seawater calcium and alkalinity in the Sargasso Sea and across the Bermuda carbonate platform A. Griffin et al. 10.1016/j.marchem.2021.104064
- Understanding the Seasonality, Trends, and Controlling Factors of Indian Ocean Acidification Over Distinctive Bio‐Provinces K. Madkaiker et al. 10.1029/2022JG006926
- Constraining CaCO3 Export and Dissolution With an Ocean Alkalinity Inverse Model H. Liang et al. 10.1029/2022GB007535
- Preformed Properties for Marine Organic Matter and Carbonate Mineral Cycling Quantification B. Carter et al. 10.1029/2020GB006623
- Excess pCO2 and carbonate system geochemistry in surface seawater of the exclusive economic zone of Qatar (Arabian Gulf) C. Izumi et al. 10.1016/j.marchem.2022.104185
- Solid State Sensor for Simultaneous Measurement of Total Alkalinity and pH of Seawater E. Briggs et al. 10.1021/acssensors.7b00305
- Mid–Late Ordovician tetradiid–calcimicrobial–cement reef: A new, peculiar reef-building consortium recording global cooling J. Lee & D. Lee 10.1016/j.gloplacha.2021.103462
- Marine carbonate factories: a global model of carbonate platform distribution J. Michel et al. 10.1007/s00531-019-01742-6
- Controls on surface water carbonate chemistry along North American ocean margins W. Cai et al. 10.1038/s41467-020-16530-z
- Climatological distribution of aragonite saturation state in the global oceans L. Jiang et al. 10.1002/2015GB005198
- When can ocean acidification impacts be detected from decadal alkalinity measurements? B. Carter et al. 10.1002/2015GB005308
- A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean G. Battaglia et al. 10.5194/bg-13-2823-2016
- The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle A. Planchat et al. 10.5194/bg-20-1195-2023
- Spatial Variation in Aragonite Saturation State and the Influencing Factors in Jiaozhou Bay, China Y. Li et al. 10.3390/w12030825
- Current CaCO3dissolution at the seafloor caused by anthropogenic CO2 O. Sulpis et al. 10.1073/pnas.1804250115
- Fusulinid-bearing oolites from the Tengchong Block in western Yunnan, SW China: Early Permian warming signal in the eastern peri-Gondwana H. Huang et al. 10.1016/j.jseaes.2020.104307
- Cold-water corals in the Subpolar North Atlantic Ocean exposed to aragonite undersaturation if the 2 °C global warming target is not met M. García-Ibáñez et al. 10.1016/j.gloplacha.2021.103480
- Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms L. Xue & W. Cai 10.1016/j.marchem.2020.103791
- Eelgrass beds can mitigate local acidification and reduce oyster malformation risk in a subarctic lagoon, Japan: A three-dimensional ecosystem model study H. Abe et al. 10.1016/j.ocemod.2022.101992
- Alkalinity sources in the Dutch Wadden Sea M. Norbisrath et al. 10.5194/os-20-1423-2024
1 citations as recorded by crossref.
Saved (final revised paper)
Saved (preprint)
Latest update: 21 Nov 2024
Short summary
We examine and discuss the portion of ocean alkalinity that varies in response to carbonate cycling and riverine alkalinity inputs using a new tracer, Alk*. We use this tracer to quantify the controls on marine carbonate saturation: at depth, we find carbonate cycling to be a minor control relative to organic matter cycling and pressure changes. In well-equilibrated surface water, we find carbonate cycling to be less important than temperature changes and freshwater cycling.
We examine and discuss the portion of ocean alkalinity that varies in response to carbonate...
Altmetrics
Final-revised paper
Preprint