Articles | Volume 12, issue 14
https://doi.org/10.5194/bg-12-4209-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-4209-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impact of seawater carbonate chemistry on the calcification of marine bivalves
J. Thomsen
CORRESPONDING AUTHOR
Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 93092-0202, USA
K. Haynert
Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
J. F. Blumenbach Institute for Zoology and Anthropology, Georg August University Göttingen, 37073 Göttingen, Germany
K. M. Wegner
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, 25992 List, Germany
F. Melzner
Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Viewed
Total article views: 5,187 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Jan 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,544 | 2,322 | 321 | 5,187 | 488 | 139 | 161 |
- HTML: 2,544
- PDF: 2,322
- XML: 321
- Total: 5,187
- Supplement: 488
- BibTeX: 139
- EndNote: 161
Total article views: 4,046 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Jul 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,028 | 1,724 | 294 | 4,046 | 299 | 117 | 132 |
- HTML: 2,028
- PDF: 1,724
- XML: 294
- Total: 4,046
- Supplement: 299
- BibTeX: 117
- EndNote: 132
Total article views: 1,141 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Jan 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
516 | 598 | 27 | 1,141 | 22 | 29 |
- HTML: 516
- PDF: 598
- XML: 27
- Total: 1,141
- BibTeX: 22
- EndNote: 29
Cited
100 citations as recorded by crossref.
- Transgenerational acclimation to seawater acidification in the Manila clam Ruditapes philippinarum: Preferential uptake of metabolic carbon L. Zhao et al. 10.1016/j.scitotenv.2018.01.225
- Effect of CO2–induced ocean acidification on the early development and shell mineralization of the European abalone (Haliotis tuberculata) N. Wessel et al. 10.1016/j.jembe.2018.08.005
- The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis C. Grenier et al. 10.1016/j.envpol.2020.114555
- Ocean acidification impacts growth and shell mineralization in juvenile abalone (Haliotis tuberculata) S. Auzoux-Bordenave et al. 10.1007/s00227-019-3623-0
- Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum Â. Almeida et al. 10.1016/j.envpol.2017.12.121
- Water quality and the CO2-carbonate system during the preconditioning of Pacific oyster (Crassostrea gigas) in a recirculating aquaculture system S. Villasuso-Palomares et al. 10.1038/s41598-022-26661-6
- Consideration of coastal carbonate chemistry in understanding biological calcification A. Fassbender et al. 10.1002/2016GL068860
- Persistent spatial structuring of coastal ocean acidification in the California Current System F. Chan et al. 10.1038/s41598-017-02777-y
- Bivalve shell formation in a naturally CO2-enriched habitat: Unraveling the resilience mechanisms from elemental signatures L. Zhao et al. 10.1016/j.chemosphere.2018.03.180
- Multiple carbonate system parameters independently govern shell formation in a marine mussel A. Ninokawa et al. 10.1038/s43247-024-01440-5
- Ocean acidification stress index for shellfish (OASIS): Linking Pacific oyster larval survival and exposure to variable carbonate chemistry regimes I. Gimenez et al. 10.1525/elementa.306
- Proteomic investigation of the blue mussel larval shell organic matrix A. Carini et al. 10.1016/j.jsb.2019.09.002
- Impact of seawater carbonate variables on post-larval bivalve calcification J. Li et al. 10.1007/s00343-017-6277-0
- Comparative de novo assembly and annotation of mantle tissue transcriptomes from the Mytilus edulis species complex (M. edulis, M. galloprovincialis, M. trossulus) L. Knöbel et al. 10.1016/j.margen.2019.100700
- Blue Mussel (Genus Mytilus) Transcriptome Response to Simulated Climate Change in the Gulf of Maine P. Martino et al. 10.2983/035.038.0310
- Can seagrass modify the effects of ocean acidification on oysters? N. Garner et al. 10.1016/j.marpolbul.2022.113438
- A pronounced fall in the CaCO3 saturation state and the total alkalinity of the surface ocean during the Mid Mesozoic G. Aloisi 10.1016/j.chemgeo.2018.04.014
- Ocean acidification and warming modify stimulatory benthos effects on sediment functioning: An experimental study on two ecosystem engineers E. Vlaminck et al. 10.3389/fmars.2023.1101972
- Boosted nutritional quality of food by CO2 enrichment fails to offset energy demand of herbivores under ocean warming, causing energy depletion and mortality J. Leung et al. 10.1016/j.scitotenv.2018.05.161
- Ocean pH fluctuations affect mussel larvae at key developmental transitions L. Kapsenberg et al. 10.1098/rspb.2018.2381
- Calcium carbonate alters the functional response of coastal sediments to eutrophication-induced acidification T. Drylie et al. 10.1038/s41598-019-48549-8
- Biochemical alterations induced in Hediste diversicolor under seawater acidification conditions R. Freitas et al. 10.1016/j.marenvres.2016.04.003
- Standing genetic variation fuels rapid adaptation to ocean acidification M. Bitter et al. 10.1038/s41467-019-13767-1
- Dual-Lifetime Referencing (t-DLR) Optical Fiber Fluorescent pH Sensor for Microenvironments W. Chen et al. 10.3390/s23218865
- Biological and physiological responses of marine crabs to ocean acidification: A review S. Thangal et al. 10.1016/j.envres.2024.118238
- Biological modification of seawater chemistry by an ecosystem engineer, the California mussel,Mytilus californianus A. Ninokawa et al. 10.1002/lno.11258
- Transgenerational biochemical effects of seawater acidification on the Manila clam (Ruditapes philippinarum) L. Zhao et al. 10.1016/j.scitotenv.2019.136420
- Transcriptomic insights into cessation of clam embryonic development following transgenerational exposure to ocean acidity extreme Y. Xu et al. 10.1016/j.marenvres.2024.106561
- The dynamic ocean acidification manipulation experimental system: Separating carbonate variables and simulating natural variability in laboratory flow‐through experiments I. Gimenez et al. 10.1002/lom3.10318
- Impacts of ocean acidification in a warming Mediterranean Sea: An overview T. Lacoue-Labarthe et al. 10.1016/j.rsma.2015.12.005
- Expression of calcification‐related ion transporters during blue mussel larval development K. Ramesh et al. 10.1002/ece3.5287
- Ocean Acidification Alters Developmental Timing and Gene Expression of Ion Transport Proteins During Larval Development in Resilient and Susceptible Lineages of the Pacific Oyster (Crassostrea gigas) M. Wright-LaGreca et al. 10.1007/s10126-022-10090-7
- Metabolic cost of calcification in bivalve larvae under experimental ocean acidification C. Frieder et al. 10.1093/icesjms/fsw213
- Behavioural and eco-physiological responses of the mussel Mytilus galloprovincialis to acidification and distinct feeding regimes J. Lassoued et al. 10.3354/meps13075
- Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule E. Ong et al. 10.1016/j.marenvres.2017.07.001
- The effects of low seawater pH on energy storage and heat shock protein 70 expression in a bivalve Limecola balthica A. Sokołowski & D. Brulińska 10.1016/j.marenvres.2018.06.018
- Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response L. Stapp et al. 10.1007/s00360-016-1053-6
- Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation C. Miller et al. 10.3389/fmars.2017.00228
- Seagrass-driven changes in carbonate chemistry enhance oyster shell growth A. Ricart et al. 10.1007/s00442-021-04949-0
- Large-scale oyster farming accelerates the removal of dissolved inorganic carbon from seawater in Sanggou Bay J. Li et al. 10.1016/j.marenvres.2024.106798
- Combining hydrodynamic modelling with genetics: can passive larval drift shape the genetic structure of Baltic Mytilus populations? H. Stuckas et al. 10.1111/mec.14075
- Mechanisms to Explain the Elemental Composition of the Initial Aragonite Shell of Larval Oysters B. Haley et al. 10.1002/2017GC007133
- In vivo characterization of bivalve larval shells: a confocal Raman microscopy study K. Ramesh et al. 10.1098/rsif.2017.0723
- Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels T. Sanders et al. 10.5194/bg-18-2573-2021
- Seasonal variation in aragonite saturation in surface waters of Puget Sound – a pilot study G. Pelletier et al. 10.1525/elementa.270
- Calmodulin regulates the calcium homeostasis in mantle of Crassostrea gigas under ocean acidification X. Xin et al. 10.3389/fmars.2022.1050022
- Biomineralization and biomechanical trade-offs under heterogeneous environments in the eastern oyster Crassostrea virginica L. Telesca et al. 10.1093/mollus/eyae033
- Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change L. Telesca et al. 10.1111/gcb.14758
- Calcification in a marginal sea – influence of seawater [Ca<sup>2+</sup>] and carbonate chemistry on bivalve shell formation J. Thomsen et al. 10.5194/bg-15-1469-2018
- CMEMS-LSCE: a global, 0.25°, monthly reconstruction of the surface ocean carbonate system T. Chau et al. 10.5194/essd-16-121-2024
- Reconsidering the role of carbonate ion concentration in calcification by marine organisms L. Bach 10.5194/bg-12-4939-2015
- Evidence for Carbonate System Mediated Shape Shift in an Intertidal Predatory Gastropod D. Mayk et al. 10.3389/fmars.2022.894182
- Shell thickness of Nucella lapillus in the North Sea increased over the last 130 years despite ocean acidification D. Mayk et al. 10.1038/s43247-022-00486-7
- Organic matter processing in a [simulated] offshore wind farm ecosystem in current and future climate and aquaculture scenarios H. Voet et al. 10.1016/j.scitotenv.2022.159285
- Mineralogical and geochemical composition of CaCO3 skeletons secreted by benthic invertebrates from the brackish Baltic Sea A. Piwoni-Piórewicz et al. 10.1016/j.ecss.2022.107808
- Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations M. Wahl et al. 10.1002/lno.10608
- Size matters: Physiological sensitivity of the scallop Argopecten purpuratus to seasonal cooling and deoxygenation upwelling-driven events L. Ramajo et al. 10.3389/fmars.2022.992319
- Shifting Balance of Protein Synthesis and Degradation Sets a Threshold for Larval Growth Under Environmental Stress C. Frieder et al. 10.1086/696830
- The Biological Crystals in Chamid Bivalve Shells: Diversity in Morphology and Crystal Arrangement Pattern S. Hoerl et al. 10.3390/cryst14070649
- High Calcification Costs Limit Mussel Growth at Low Salinity T. Sanders et al. 10.3389/fmars.2018.00352
- In situ recovery of bivalve shell characteristics after temporary exposure to elevated pCO2 J. Grear et al. 10.1002/lno.11456
- Effects of food supply on northern bay scallops Argopecten irradians reared under two pCO2 conditions S. Gurr et al. 10.3354/meps14624
- Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis Y. Meng et al. 10.5194/bg-15-6833-2018
- A mineralogical record of ocean change: Decadal and centennial patterns in the California mussel S. McCoy et al. 10.1111/gcb.14013
- Living under natural conditions of ocean acidification entails energy expenditure and oxidative stress in a mussel species S. Signorini et al. 10.1016/j.marpolbul.2024.116470
- Combined effects of salinity and trematode infections on the filtration capacity, growth and condition of mussels C. Bommarito et al. 10.3354/meps14179
- CONSIDERATION OF THE VALIDITY OF THE STATISTICAL CHARACTERISTICS OF pH IN SURFACE WATERS V. Korobov et al. 10.25296/1997-8650-2019-13-2-52-58
- Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica) C. Schwaner et al. 10.1007/s10126-023-10255-y
- Seawater carbonate parameters function differently in affecting embryonic development and calcification in Pacific abalone (Haliotis discus hannai) J. Li et al. 10.1016/j.aquatox.2023.106450
- Naturally acidified habitat selects for ocean acidification–tolerant mussels J. Thomsen et al. 10.1126/sciadv.1602411
- Long-term alkalinity trends in the Baltic Sea and their implications for CO2 -induced acidification J. Müller et al. 10.1002/lno.10349
- Impaired larval development at low salinities could limit the spread of the non-native crab Hemigrapsus takanoi in the Baltic Sea O. Nour et al. 10.3354/ab00743
- Ocean Acidification and Coastal Marine Invertebrates: Tracking CO2Effects from Seawater to the Cell F. Melzner et al. 10.1146/annurev-marine-010419-010658
- Physiological response to seawater pH of the bivalve Abra alba, a benthic ecosystem engineer, is modulated by low pH E. Vlaminck et al. 10.1016/j.marenvres.2022.105704
- FINE STRUCTURE OF THE SHELL OF DIPLOID AND TRIPLOID OYSTERS, <i>CRASSOSTREA GIGAS</i> (THUNBERG 1793) (BIVALVIA, OSTREIDAE) REARED IN THE BLACK SEA A. Pirkova & L. Ladygina 10.31857/S004451342309009X
- Infection by invasive parasites increases susceptibility of native hosts to secondary infection via modulation of cellular immunity F. Demann et al. 10.1111/1365-2656.12939
- Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic G. Saba et al. 10.1016/j.ecss.2019.04.022
- Dilution of Seawater Affects the Ca2 + Transport in the Outer Mantle Epithelium of Crassostrea gigas J. Sillanpää et al. 10.3389/fphys.2020.00001
- Fractionation, bioavailability and risk evaluation of phosphorus in lagoons surface sediments, Red Sea, Saudi Arabia B. Al-Mur 10.1080/02757540.2023.2222020
- Vulnerability of Tritia reticulata (L.) early life stages to ocean acidification and warming I. Oliveira et al. 10.1038/s41598-020-62169-7
- Temperature and reduced pH regulate stress and biomineralization gene expression in larvae and post-larvae of the sand dollar Dendraster excentricus T. Olivares-Bañuelos et al. 10.1080/17451000.2022.2105894
- Microbiome response differs among selected lines of Sydney rock oysters to ocean warming and acidification E. Scanes et al. 10.1093/femsec/fiab099
- Legacy of Multiple Stressors: Responses of Gastropod Larvae and Juveniles to Ocean Acidification and Nutrition S. Bogan et al. 10.1086/702993
- Clumped isotopes in modern marine bivalves D. Huyghe et al. 10.1016/j.gca.2021.09.019
- Deciphering carbon sources of mussel shell carbonate under experimental ocean acidification and warming Y. Lu et al. 10.1016/j.marenvres.2018.10.007
- Impacts of Acclimation in Warm-Low pH Conditions on the Physiology of the Sea Urchin Heliocidaris erythrogramma and Carryover Effects for Juvenile Offspring J. Harianto et al. 10.3389/fmars.2020.588938
- A post-larval stage-based model of hard clam Mercenaria mercenaria development in response to multiple stressors: temperature and acidification severity C. Miller & G. Waldbusser 10.3354/meps11882
- The dynamic ocean acidification manipulation experimental system: Separating carbonate variables and simulating natural variability in laboratory flow‐through experiments I. Gimenez et al. 10.1002/lom3.10318
- The Omega myth: what really drives lower calcification rates in an acidifying ocean T. Cyronak et al. 10.1093/icesjms/fsv075
- Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: A tale from the clam Ruditapes philippinarum M. Munari et al. 10.1016/j.chemosphere.2016.06.095
- Effects of ocean acidification on 109Cd, 57Co, and 134Cs bioconcentration by the European oyster (Ostrea edulis): Biokinetics and tissue-to-subcellular partitioning N. Sezer et al. 10.1016/j.jenvrad.2018.07.011
- Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life C. Hurd et al. 10.1071/MF19267
- Physiological Challenges to Fishes in a Warmer and Acidified Future G. Nilsson & S. Lefevre 10.1152/physiol.00055.2015
- Salinity Driven Selection and Local Adaptation in Baltic Sea Mytilid Mussels L. Knöbel et al. 10.3389/fmars.2021.692078
- Ocean acidification in New Zealand waters: trends and impacts C. Law et al. 10.1080/00288330.2017.1374983
- Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing A. Barner et al. 10.1111/gcb.14372
- Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification K. Ramesh et al. 10.1038/s41467-017-01806-8
- Slow shell building, a possible trait for resistance to the effects of acute ocean acidification G. Waldbusser et al. 10.1002/lno.10348
- Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae G. Waldbusser et al. 10.1371/journal.pone.0128376
- Calcium carbonate saturation state: on myths and this or that stories G. Waldbusser et al. 10.1093/icesjms/fsv174
87 citations as recorded by crossref.
- Transgenerational acclimation to seawater acidification in the Manila clam Ruditapes philippinarum: Preferential uptake of metabolic carbon L. Zhao et al. 10.1016/j.scitotenv.2018.01.225
- Effect of CO2–induced ocean acidification on the early development and shell mineralization of the European abalone (Haliotis tuberculata) N. Wessel et al. 10.1016/j.jembe.2018.08.005
- The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis C. Grenier et al. 10.1016/j.envpol.2020.114555
- Ocean acidification impacts growth and shell mineralization in juvenile abalone (Haliotis tuberculata) S. Auzoux-Bordenave et al. 10.1007/s00227-019-3623-0
- Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum Â. Almeida et al. 10.1016/j.envpol.2017.12.121
- Water quality and the CO2-carbonate system during the preconditioning of Pacific oyster (Crassostrea gigas) in a recirculating aquaculture system S. Villasuso-Palomares et al. 10.1038/s41598-022-26661-6
- Consideration of coastal carbonate chemistry in understanding biological calcification A. Fassbender et al. 10.1002/2016GL068860
- Persistent spatial structuring of coastal ocean acidification in the California Current System F. Chan et al. 10.1038/s41598-017-02777-y
- Bivalve shell formation in a naturally CO2-enriched habitat: Unraveling the resilience mechanisms from elemental signatures L. Zhao et al. 10.1016/j.chemosphere.2018.03.180
- Multiple carbonate system parameters independently govern shell formation in a marine mussel A. Ninokawa et al. 10.1038/s43247-024-01440-5
- Ocean acidification stress index for shellfish (OASIS): Linking Pacific oyster larval survival and exposure to variable carbonate chemistry regimes I. Gimenez et al. 10.1525/elementa.306
- Proteomic investigation of the blue mussel larval shell organic matrix A. Carini et al. 10.1016/j.jsb.2019.09.002
- Impact of seawater carbonate variables on post-larval bivalve calcification J. Li et al. 10.1007/s00343-017-6277-0
- Comparative de novo assembly and annotation of mantle tissue transcriptomes from the Mytilus edulis species complex (M. edulis, M. galloprovincialis, M. trossulus) L. Knöbel et al. 10.1016/j.margen.2019.100700
- Blue Mussel (Genus Mytilus) Transcriptome Response to Simulated Climate Change in the Gulf of Maine P. Martino et al. 10.2983/035.038.0310
- Can seagrass modify the effects of ocean acidification on oysters? N. Garner et al. 10.1016/j.marpolbul.2022.113438
- A pronounced fall in the CaCO3 saturation state and the total alkalinity of the surface ocean during the Mid Mesozoic G. Aloisi 10.1016/j.chemgeo.2018.04.014
- Ocean acidification and warming modify stimulatory benthos effects on sediment functioning: An experimental study on two ecosystem engineers E. Vlaminck et al. 10.3389/fmars.2023.1101972
- Boosted nutritional quality of food by CO2 enrichment fails to offset energy demand of herbivores under ocean warming, causing energy depletion and mortality J. Leung et al. 10.1016/j.scitotenv.2018.05.161
- Ocean pH fluctuations affect mussel larvae at key developmental transitions L. Kapsenberg et al. 10.1098/rspb.2018.2381
- Calcium carbonate alters the functional response of coastal sediments to eutrophication-induced acidification T. Drylie et al. 10.1038/s41598-019-48549-8
- Biochemical alterations induced in Hediste diversicolor under seawater acidification conditions R. Freitas et al. 10.1016/j.marenvres.2016.04.003
- Standing genetic variation fuels rapid adaptation to ocean acidification M. Bitter et al. 10.1038/s41467-019-13767-1
- Dual-Lifetime Referencing (t-DLR) Optical Fiber Fluorescent pH Sensor for Microenvironments W. Chen et al. 10.3390/s23218865
- Biological and physiological responses of marine crabs to ocean acidification: A review S. Thangal et al. 10.1016/j.envres.2024.118238
- Biological modification of seawater chemistry by an ecosystem engineer, the California mussel,Mytilus californianus A. Ninokawa et al. 10.1002/lno.11258
- Transgenerational biochemical effects of seawater acidification on the Manila clam (Ruditapes philippinarum) L. Zhao et al. 10.1016/j.scitotenv.2019.136420
- Transcriptomic insights into cessation of clam embryonic development following transgenerational exposure to ocean acidity extreme Y. Xu et al. 10.1016/j.marenvres.2024.106561
- The dynamic ocean acidification manipulation experimental system: Separating carbonate variables and simulating natural variability in laboratory flow‐through experiments I. Gimenez et al. 10.1002/lom3.10318
- Impacts of ocean acidification in a warming Mediterranean Sea: An overview T. Lacoue-Labarthe et al. 10.1016/j.rsma.2015.12.005
- Expression of calcification‐related ion transporters during blue mussel larval development K. Ramesh et al. 10.1002/ece3.5287
- Ocean Acidification Alters Developmental Timing and Gene Expression of Ion Transport Proteins During Larval Development in Resilient and Susceptible Lineages of the Pacific Oyster (Crassostrea gigas) M. Wright-LaGreca et al. 10.1007/s10126-022-10090-7
- Metabolic cost of calcification in bivalve larvae under experimental ocean acidification C. Frieder et al. 10.1093/icesjms/fsw213
- Behavioural and eco-physiological responses of the mussel Mytilus galloprovincialis to acidification and distinct feeding regimes J. Lassoued et al. 10.3354/meps13075
- Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule E. Ong et al. 10.1016/j.marenvres.2017.07.001
- The effects of low seawater pH on energy storage and heat shock protein 70 expression in a bivalve Limecola balthica A. Sokołowski & D. Brulińska 10.1016/j.marenvres.2018.06.018
- Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response L. Stapp et al. 10.1007/s00360-016-1053-6
- Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation C. Miller et al. 10.3389/fmars.2017.00228
- Seagrass-driven changes in carbonate chemistry enhance oyster shell growth A. Ricart et al. 10.1007/s00442-021-04949-0
- Large-scale oyster farming accelerates the removal of dissolved inorganic carbon from seawater in Sanggou Bay J. Li et al. 10.1016/j.marenvres.2024.106798
- Combining hydrodynamic modelling with genetics: can passive larval drift shape the genetic structure of Baltic Mytilus populations? H. Stuckas et al. 10.1111/mec.14075
- Mechanisms to Explain the Elemental Composition of the Initial Aragonite Shell of Larval Oysters B. Haley et al. 10.1002/2017GC007133
- In vivo characterization of bivalve larval shells: a confocal Raman microscopy study K. Ramesh et al. 10.1098/rsif.2017.0723
- Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels T. Sanders et al. 10.5194/bg-18-2573-2021
- Seasonal variation in aragonite saturation in surface waters of Puget Sound – a pilot study G. Pelletier et al. 10.1525/elementa.270
- Calmodulin regulates the calcium homeostasis in mantle of Crassostrea gigas under ocean acidification X. Xin et al. 10.3389/fmars.2022.1050022
- Biomineralization and biomechanical trade-offs under heterogeneous environments in the eastern oyster Crassostrea virginica L. Telesca et al. 10.1093/mollus/eyae033
- Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change L. Telesca et al. 10.1111/gcb.14758
- Calcification in a marginal sea – influence of seawater [Ca<sup>2+</sup>] and carbonate chemistry on bivalve shell formation J. Thomsen et al. 10.5194/bg-15-1469-2018
- CMEMS-LSCE: a global, 0.25°, monthly reconstruction of the surface ocean carbonate system T. Chau et al. 10.5194/essd-16-121-2024
- Reconsidering the role of carbonate ion concentration in calcification by marine organisms L. Bach 10.5194/bg-12-4939-2015
- Evidence for Carbonate System Mediated Shape Shift in an Intertidal Predatory Gastropod D. Mayk et al. 10.3389/fmars.2022.894182
- Shell thickness of Nucella lapillus in the North Sea increased over the last 130 years despite ocean acidification D. Mayk et al. 10.1038/s43247-022-00486-7
- Organic matter processing in a [simulated] offshore wind farm ecosystem in current and future climate and aquaculture scenarios H. Voet et al. 10.1016/j.scitotenv.2022.159285
- Mineralogical and geochemical composition of CaCO3 skeletons secreted by benthic invertebrates from the brackish Baltic Sea A. Piwoni-Piórewicz et al. 10.1016/j.ecss.2022.107808
- Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations M. Wahl et al. 10.1002/lno.10608
- Size matters: Physiological sensitivity of the scallop Argopecten purpuratus to seasonal cooling and deoxygenation upwelling-driven events L. Ramajo et al. 10.3389/fmars.2022.992319
- Shifting Balance of Protein Synthesis and Degradation Sets a Threshold for Larval Growth Under Environmental Stress C. Frieder et al. 10.1086/696830
- The Biological Crystals in Chamid Bivalve Shells: Diversity in Morphology and Crystal Arrangement Pattern S. Hoerl et al. 10.3390/cryst14070649
- High Calcification Costs Limit Mussel Growth at Low Salinity T. Sanders et al. 10.3389/fmars.2018.00352
- In situ recovery of bivalve shell characteristics after temporary exposure to elevated pCO2 J. Grear et al. 10.1002/lno.11456
- Effects of food supply on northern bay scallops Argopecten irradians reared under two pCO2 conditions S. Gurr et al. 10.3354/meps14624
- Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis Y. Meng et al. 10.5194/bg-15-6833-2018
- A mineralogical record of ocean change: Decadal and centennial patterns in the California mussel S. McCoy et al. 10.1111/gcb.14013
- Living under natural conditions of ocean acidification entails energy expenditure and oxidative stress in a mussel species S. Signorini et al. 10.1016/j.marpolbul.2024.116470
- Combined effects of salinity and trematode infections on the filtration capacity, growth and condition of mussels C. Bommarito et al. 10.3354/meps14179
- CONSIDERATION OF THE VALIDITY OF THE STATISTICAL CHARACTERISTICS OF pH IN SURFACE WATERS V. Korobov et al. 10.25296/1997-8650-2019-13-2-52-58
- Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica) C. Schwaner et al. 10.1007/s10126-023-10255-y
- Seawater carbonate parameters function differently in affecting embryonic development and calcification in Pacific abalone (Haliotis discus hannai) J. Li et al. 10.1016/j.aquatox.2023.106450
- Naturally acidified habitat selects for ocean acidification–tolerant mussels J. Thomsen et al. 10.1126/sciadv.1602411
- Long-term alkalinity trends in the Baltic Sea and their implications for CO2 -induced acidification J. Müller et al. 10.1002/lno.10349
- Impaired larval development at low salinities could limit the spread of the non-native crab Hemigrapsus takanoi in the Baltic Sea O. Nour et al. 10.3354/ab00743
- Ocean Acidification and Coastal Marine Invertebrates: Tracking CO2Effects from Seawater to the Cell F. Melzner et al. 10.1146/annurev-marine-010419-010658
- Physiological response to seawater pH of the bivalve Abra alba, a benthic ecosystem engineer, is modulated by low pH E. Vlaminck et al. 10.1016/j.marenvres.2022.105704
- FINE STRUCTURE OF THE SHELL OF DIPLOID AND TRIPLOID OYSTERS, <i>CRASSOSTREA GIGAS</i> (THUNBERG 1793) (BIVALVIA, OSTREIDAE) REARED IN THE BLACK SEA A. Pirkova & L. Ladygina 10.31857/S004451342309009X
- Infection by invasive parasites increases susceptibility of native hosts to secondary infection via modulation of cellular immunity F. Demann et al. 10.1111/1365-2656.12939
- Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic G. Saba et al. 10.1016/j.ecss.2019.04.022
- Dilution of Seawater Affects the Ca2 + Transport in the Outer Mantle Epithelium of Crassostrea gigas J. Sillanpää et al. 10.3389/fphys.2020.00001
- Fractionation, bioavailability and risk evaluation of phosphorus in lagoons surface sediments, Red Sea, Saudi Arabia B. Al-Mur 10.1080/02757540.2023.2222020
- Vulnerability of Tritia reticulata (L.) early life stages to ocean acidification and warming I. Oliveira et al. 10.1038/s41598-020-62169-7
- Temperature and reduced pH regulate stress and biomineralization gene expression in larvae and post-larvae of the sand dollar Dendraster excentricus T. Olivares-Bañuelos et al. 10.1080/17451000.2022.2105894
- Microbiome response differs among selected lines of Sydney rock oysters to ocean warming and acidification E. Scanes et al. 10.1093/femsec/fiab099
- Legacy of Multiple Stressors: Responses of Gastropod Larvae and Juveniles to Ocean Acidification and Nutrition S. Bogan et al. 10.1086/702993
- Clumped isotopes in modern marine bivalves D. Huyghe et al. 10.1016/j.gca.2021.09.019
- Deciphering carbon sources of mussel shell carbonate under experimental ocean acidification and warming Y. Lu et al. 10.1016/j.marenvres.2018.10.007
- Impacts of Acclimation in Warm-Low pH Conditions on the Physiology of the Sea Urchin Heliocidaris erythrogramma and Carryover Effects for Juvenile Offspring J. Harianto et al. 10.3389/fmars.2020.588938
- A post-larval stage-based model of hard clam Mercenaria mercenaria development in response to multiple stressors: temperature and acidification severity C. Miller & G. Waldbusser 10.3354/meps11882
13 citations as recorded by crossref.
- The dynamic ocean acidification manipulation experimental system: Separating carbonate variables and simulating natural variability in laboratory flow‐through experiments I. Gimenez et al. 10.1002/lom3.10318
- The Omega myth: what really drives lower calcification rates in an acidifying ocean T. Cyronak et al. 10.1093/icesjms/fsv075
- Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: A tale from the clam Ruditapes philippinarum M. Munari et al. 10.1016/j.chemosphere.2016.06.095
- Effects of ocean acidification on 109Cd, 57Co, and 134Cs bioconcentration by the European oyster (Ostrea edulis): Biokinetics and tissue-to-subcellular partitioning N. Sezer et al. 10.1016/j.jenvrad.2018.07.011
- Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life C. Hurd et al. 10.1071/MF19267
- Physiological Challenges to Fishes in a Warmer and Acidified Future G. Nilsson & S. Lefevre 10.1152/physiol.00055.2015
- Salinity Driven Selection and Local Adaptation in Baltic Sea Mytilid Mussels L. Knöbel et al. 10.3389/fmars.2021.692078
- Ocean acidification in New Zealand waters: trends and impacts C. Law et al. 10.1080/00288330.2017.1374983
- Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing A. Barner et al. 10.1111/gcb.14372
- Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification K. Ramesh et al. 10.1038/s41467-017-01806-8
- Slow shell building, a possible trait for resistance to the effects of acute ocean acidification G. Waldbusser et al. 10.1002/lno.10348
- Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae G. Waldbusser et al. 10.1371/journal.pone.0128376
- Calcium carbonate saturation state: on myths and this or that stories G. Waldbusser et al. 10.1093/icesjms/fsv174
Saved (final revised paper)
Saved (preprint)
Latest update: 21 Nov 2024
Altmetrics
Final-revised paper
Preprint