Articles | Volume 12, issue 3
https://doi.org/10.5194/bg-12-863-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-863-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
New highlights of phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results
Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (UMR 7330), CNRS, Aix-Marseille Université, Europôle méditerranéen de l'Arbois BP 80, 13545 Aix en Provence CEDEX 04, France
I. Basile-Doelsch
Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (UMR 7330), CNRS, Aix-Marseille Université, Europôle méditerranéen de l'Arbois BP 80, 13545 Aix en Provence CEDEX 04, France
T. Delhaye
Plateforme NanoSIMS, OSUR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes CEDEX, France
D. Borshneck
Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (UMR 7330), CNRS, Aix-Marseille Université, Europôle méditerranéen de l'Arbois BP 80, 13545 Aix en Provence CEDEX 04, France
J. C. Mazur
Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (UMR 7330), CNRS, Aix-Marseille Université, Europôle méditerranéen de l'Arbois BP 80, 13545 Aix en Provence CEDEX 04, France
P. Reyerson
Department of Geography, University of Wisconsin-Madison, 550 North Park Street, Madison, WI 53706, USA
G. M. Santos
Department of Earth System Science, University of California, Irvine, B321 Croul Hall, Irvine, CA 92697-3100, USA
Viewed
Total article views: 3,439 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Oct 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,712 | 1,556 | 171 | 3,439 | 126 | 156 |
- HTML: 1,712
- PDF: 1,556
- XML: 171
- Total: 3,439
- BibTeX: 126
- EndNote: 156
Total article views: 2,754 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Feb 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,371 | 1,227 | 156 | 2,754 | 124 | 153 |
- HTML: 1,371
- PDF: 1,227
- XML: 156
- Total: 2,754
- BibTeX: 124
- EndNote: 153
Total article views: 685 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Oct 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
341 | 329 | 15 | 685 | 2 | 3 |
- HTML: 341
- PDF: 329
- XML: 15
- Total: 685
- BibTeX: 2
- EndNote: 3
Cited
65 citations as recorded by crossref.
- Phytoliths as proxies of the past I. Rashid et al. 10.1016/j.earscirev.2019.05.005
- Late Pleistocene humans in Sri Lanka used plant resources: A phytolith record from Fahien rock shelter R. Premathilake & C. Hunt 10.1016/j.palaeo.2018.05.015
- Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica D. Puppe & M. Leue 10.1016/j.geoderma.2018.06.001
- Triple Oxygen Isotope Trend Recorded by Precambrian Cherts: A Perspective from Combined Bulk and in situ Secondary Ion Probe Measurements D. Zakharov et al. 10.2138/rmg.2021.86.10
- The phytolith carbon sequestration concept: Fact or fiction? A comment on “Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems by Song et al. doi: 10.1016/j.earscirev.2016.04.007” G. Santos & A. Alexandre 10.1016/j.earscirev.2016.11.005
- Siliplant1 B-domain precipitates silica spheres, aggregates, or gel, depending on Si-precursor to peptide ratios V. Ayieko et al. 10.1016/j.colsurfb.2023.113582
- The Presence of Silica Bodies in the Foliar Epidermis of Zoysiagrass M. Ushilo et al. 10.2134/itsrj2016.10.0841
- The carbon isotopic composition of occluded carbon in phytoliths: A comparative study of phytolith extraction methods B. Roy et al. 10.1016/j.revpalbo.2020.104280
- Sedimentological perspective on phytolith analysis in palaeoecological reconstruction W. Qader et al. 10.1016/j.earscirev.2023.104549
- The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology M. Hodson 10.1016/j.jas.2015.09.002
- Soil processes drive the biological silicon feedback loop J. Cornelis et al. 10.1111/1365-2435.12704
- Mechanism of silica deposition in sorghum silica cells S. Kumar et al. 10.1111/nph.14173
- Rapid screening of wood and leaf tissues: investigating silicon-based phytoliths in Populus trichocarpa for carbon storage applications using laser-induced breakdown spectroscopy and scanning electron microscopy–energy dispersive X-ray spectroscopy H. Andrews et al. 10.1039/D3JA00186E
- Phytolith Radiocarbon Dating: A Review of Previous Studies in China and the Current State of the Debate X. Zuo & H. Lu 10.3389/fpls.2019.01302
- Taxonomic Demarcation of Setaria pumila (Poir.) Roem. & Schult., S. verticillata (L.) P. Beauv., and S. viridis (L.) P. Beauv. (Cenchrinae, Paniceae, Panicoideae, Poaceae) From Phytolith Signatures M. Bhat et al. 10.3389/fpls.2018.00864
- 3D shape analysis of grass silica short cell phytoliths: a new method for fossil classification and analysis of shape evolution T. Gallaher et al. 10.1111/nph.16677
- Phytolith-Occluded Carbon Sequestration Potential of Oil Palm Plantation in Tamil Nadu V. Davamani et al. 10.1021/acsomega.1c05592
- How important is carbon sequestration in phytoliths within the soil? F. de Tombeur et al. 10.1007/s11104-024-06700-z
- Dynamic Nuclear Polarization NMR as a new tool to investigate the nature of organic compounds occluded in plant silica particles A. Masion et al. 10.1038/s41598-017-03659-z
- METODOLOGÍA Y ANÁLISIS EN LA DIGITALIZACIÓN DE CUERPOS MICROSCÓPICOS: SU APLICACIÓN A LOS ESTUDIOS FITOLÍTICOS S. Frezzia & A. Zucol 10.5710/PEAPA.25.08.2023.475
- Auto-Fluorescence in Phytoliths—A Mechanistic Understanding Derived From Microscopic and Spectroscopic Analyses D. Puppe et al. 10.3389/fenvs.2022.915947
- Location, speciation, and quantification of carbon in silica phytoliths using synchrotron scanning transmission X-ray microspectroscopy D. Negrao et al. 10.1371/journal.pone.0302009
- Silicon in paddy fields: Benefits for rice production and the potential of rice phytoliths for biogeochemical carbon sequestration X. Yang et al. 10.1016/j.scitotenv.2024.172497
- Arsenic in rice straw phytoliths: Encapsulation and release properties M. Nguyen et al. 10.1016/j.apgeochem.2021.104907
- Rare earth elements sequestration in phytoliths: Partitioning patterns and influencing mechanism B. Wang et al. 10.1016/j.scitotenv.2024.175287
- Spectroscopic Discrimination of Sorghum Silica Phytoliths V. Zancajo et al. 10.3389/fpls.2019.01571
- Silicon mobilisation by root-released carboxylates F. de Tombeur et al. 10.1016/j.tplants.2021.07.003
- Phytoliths as indicators of Quaternary vegetation at the Paleolithic site of Attirampakkam, India R. Premathilake et al. 10.1016/j.jasrep.2017.06.013
- Foliar element distributions in Guadua bamboo, a major forest dominant in southwestern Amazonia R. Kalliola et al. 10.1007/s42452-021-04927-4
- From radiocarbon analysis to interpretation: A comment on “Phytolith Radiocarbon Dating in Archaeological and Paleoecological Research: A Case Study of Phytoliths from Modern Neotropical Plants and a Review of the Previous Dating Evidence”, Journal of Archaeological Science (2015), doi: 10.1016/j.jas.2015.06.002.” by Dolores R. Piperno G. Santos et al. 10.1016/j.jas.2016.04.015
- Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems Z. Song et al. 10.1016/j.earscirev.2016.04.007
- TEMPORARY REMOVAL: High potential of phytoliths in terrestrial carbon sequestration at a centennial–millennial scale: Reply to comments by Santos and Alexandre Z. Song et al. 10.1016/j.earscirev.2016.11.001
- Plant Silicon and Phytolith Research and the Earth-Life Superdiscipline O. Katz 10.3389/fpls.2018.01281
- pH-dependent silicon release from phytoliths of Norway spruce (Picea abies) Z. Lisztes-Szabó et al. 10.1007/s10933-019-00103-2
- Silicon Fertilization for Carbon Sequestration Through PhytOC Production in Plants M. Suji et al. 10.1080/00103624.2024.2413535
- In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography Y. Weng et al. 10.5194/bg-15-3133-2018
- Silicon in the Soil–Plant Continuum: Intricate Feedback Mechanisms within Ecosystems O. Katz et al. 10.3390/plants10040652
- A review of carbon isotopes of phytoliths: implications for phytolith-occluded carbon sources S. Yang et al. 10.1007/s11368-019-02548-4
- Plant growth conditions alter phytolith carbon K. Gallagher et al. 10.3389/fpls.2015.00753
- Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change Z. Song et al. 10.1016/j.earscirev.2018.06.020
- When the carbon being dated is not what you think it is: Insights from phytolith carbon research G. Santos et al. 10.1016/j.quascirev.2018.08.007
- Siliplant1 protein precipitates silica in sorghum silica cells S. Kumar et al. 10.1093/jxb/eraa258
- Combined Silicon-Phosphorus Fertilization Affects the Biomass and Phytolith Stock of Rice Plants Z. Li et al. 10.3389/fpls.2020.00067
- Silicon en route - from loam to leaf A. Wani et al. 10.1007/s10725-022-00931-9
- Testing phytolith analysis approaches to estimate the prehistoric anthropogenic burning regime on the central California coast R. Evett & R. Cuthrell 10.1016/j.quaint.2015.10.070
- Interplay between silica deposition and viability during the life span of sorghum silica cells S. Kumar & R. Elbaum 10.1111/nph.14867
- The Relative Importance of Cell Wall and Lumen Phytoliths in Carbon Sequestration in Soil: A Hypothesis M. Hodson 10.3389/feart.2019.00167
- Earliest Musa banana from the late Quaternary sequence at Fahien Rock Shelter in Sri Lanka R. Premathilake & C. Hunt 10.1002/jqs.3041
- Role of silicon in phytolith-occluded carbon (PhytOC) sequestration I. Rehman & I. Rashid 10.1007/s42535-023-00659-5
- A new method for extracting the insoluble occluded carbon in archaeological and modern phytoliths: Detection of 14C depleted carbon fraction and implications for radiocarbon dating Y. Asscher et al. 10.1016/j.jas.2016.11.005
- Copper encapsulated in grass-derived phytoliths: Characterization, dissolution properties and the relation of content to soil properties T. Tran et al. 10.1016/j.jenvman.2019.109423
- Silica deposition in plants: scaffolding the mineralization N. Zexer et al. 10.1093/aob/mcad056
- Unambiguous evidence of old soil carbon in grass biosilica particles P. Reyerson et al. 10.5194/bg-13-1269-2016
- Burned phytoliths absorbing black carbon as a potential proxy for paleofire H. Dong et al. 10.1177/09596836221074033
- Encapsulation of lead in rice phytoliths as a possible pollutant source in paddy soils T. Nguyen et al. 10.1016/j.envexpbot.2019.02.009
- Silicon content is a plant functional trait: implications in a changing world O. Katz 10.1016/j.flora.2018.08.007
- Characterization and implication of phytolith-associated potassium in rice straw and paddy soils H. Nguyen et al. 10.1080/03650340.2018.1564908
- Phytolith carbon sequestration in global terrestrial biomes Z. Song et al. 10.1016/j.scitotenv.2017.06.107
- Conversion from tussock grassland to pine forest: effect on soil phytoliths and phytolith-occluded carbon (PhytOC) X. Li et al. 10.1007/s11368-018-2160-7
- The potential of sodium carbonate and Tiron extractions for the determination of silicon contents in plant samples—A method comparison using hydrofluoric acid digestion as reference D. Puppe et al. 10.3389/fenvs.2023.1145604
- Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence A. Alexandre et al. 10.5194/bg-13-1693-2016
- Phytolith profile of Acrachne racemosa (B. Heyne ex Roem. & Schult.) Ohwi (Cynodonteae, Chloridoideae, Poaceae) P. Badgal et al. 10.1371/journal.pone.0263721
- Phytolith‐occluded carbon in leaves of Dendrocalamus Ronganensis influenced by drought during growing season R. Li et al. 10.1111/ppl.13748
- Silicification in Grasses: Variation between Different Cell Types S. Kumar et al. 10.3389/fpls.2017.00438
- Multi-analytical characterisation of wheat biominerals: impact of methods of extraction on the mineralogy and chemistry of phytoliths N. Andriopoulou & G. Christidis 10.1007/s12520-020-01091-5
64 citations as recorded by crossref.
- Phytoliths as proxies of the past I. Rashid et al. 10.1016/j.earscirev.2019.05.005
- Late Pleistocene humans in Sri Lanka used plant resources: A phytolith record from Fahien rock shelter R. Premathilake & C. Hunt 10.1016/j.palaeo.2018.05.015
- Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica D. Puppe & M. Leue 10.1016/j.geoderma.2018.06.001
- Triple Oxygen Isotope Trend Recorded by Precambrian Cherts: A Perspective from Combined Bulk and in situ Secondary Ion Probe Measurements D. Zakharov et al. 10.2138/rmg.2021.86.10
- The phytolith carbon sequestration concept: Fact or fiction? A comment on “Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems by Song et al. doi: 10.1016/j.earscirev.2016.04.007” G. Santos & A. Alexandre 10.1016/j.earscirev.2016.11.005
- Siliplant1 B-domain precipitates silica spheres, aggregates, or gel, depending on Si-precursor to peptide ratios V. Ayieko et al. 10.1016/j.colsurfb.2023.113582
- The Presence of Silica Bodies in the Foliar Epidermis of Zoysiagrass M. Ushilo et al. 10.2134/itsrj2016.10.0841
- The carbon isotopic composition of occluded carbon in phytoliths: A comparative study of phytolith extraction methods B. Roy et al. 10.1016/j.revpalbo.2020.104280
- Sedimentological perspective on phytolith analysis in palaeoecological reconstruction W. Qader et al. 10.1016/j.earscirev.2023.104549
- The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology M. Hodson 10.1016/j.jas.2015.09.002
- Soil processes drive the biological silicon feedback loop J. Cornelis et al. 10.1111/1365-2435.12704
- Mechanism of silica deposition in sorghum silica cells S. Kumar et al. 10.1111/nph.14173
- Rapid screening of wood and leaf tissues: investigating silicon-based phytoliths in Populus trichocarpa for carbon storage applications using laser-induced breakdown spectroscopy and scanning electron microscopy–energy dispersive X-ray spectroscopy H. Andrews et al. 10.1039/D3JA00186E
- Phytolith Radiocarbon Dating: A Review of Previous Studies in China and the Current State of the Debate X. Zuo & H. Lu 10.3389/fpls.2019.01302
- Taxonomic Demarcation of Setaria pumila (Poir.) Roem. & Schult., S. verticillata (L.) P. Beauv., and S. viridis (L.) P. Beauv. (Cenchrinae, Paniceae, Panicoideae, Poaceae) From Phytolith Signatures M. Bhat et al. 10.3389/fpls.2018.00864
- 3D shape analysis of grass silica short cell phytoliths: a new method for fossil classification and analysis of shape evolution T. Gallaher et al. 10.1111/nph.16677
- Phytolith-Occluded Carbon Sequestration Potential of Oil Palm Plantation in Tamil Nadu V. Davamani et al. 10.1021/acsomega.1c05592
- How important is carbon sequestration in phytoliths within the soil? F. de Tombeur et al. 10.1007/s11104-024-06700-z
- Dynamic Nuclear Polarization NMR as a new tool to investigate the nature of organic compounds occluded in plant silica particles A. Masion et al. 10.1038/s41598-017-03659-z
- METODOLOGÍA Y ANÁLISIS EN LA DIGITALIZACIÓN DE CUERPOS MICROSCÓPICOS: SU APLICACIÓN A LOS ESTUDIOS FITOLÍTICOS S. Frezzia & A. Zucol 10.5710/PEAPA.25.08.2023.475
- Auto-Fluorescence in Phytoliths—A Mechanistic Understanding Derived From Microscopic and Spectroscopic Analyses D. Puppe et al. 10.3389/fenvs.2022.915947
- Location, speciation, and quantification of carbon in silica phytoliths using synchrotron scanning transmission X-ray microspectroscopy D. Negrao et al. 10.1371/journal.pone.0302009
- Silicon in paddy fields: Benefits for rice production and the potential of rice phytoliths for biogeochemical carbon sequestration X. Yang et al. 10.1016/j.scitotenv.2024.172497
- Arsenic in rice straw phytoliths: Encapsulation and release properties M. Nguyen et al. 10.1016/j.apgeochem.2021.104907
- Rare earth elements sequestration in phytoliths: Partitioning patterns and influencing mechanism B. Wang et al. 10.1016/j.scitotenv.2024.175287
- Spectroscopic Discrimination of Sorghum Silica Phytoliths V. Zancajo et al. 10.3389/fpls.2019.01571
- Silicon mobilisation by root-released carboxylates F. de Tombeur et al. 10.1016/j.tplants.2021.07.003
- Phytoliths as indicators of Quaternary vegetation at the Paleolithic site of Attirampakkam, India R. Premathilake et al. 10.1016/j.jasrep.2017.06.013
- Foliar element distributions in Guadua bamboo, a major forest dominant in southwestern Amazonia R. Kalliola et al. 10.1007/s42452-021-04927-4
- From radiocarbon analysis to interpretation: A comment on “Phytolith Radiocarbon Dating in Archaeological and Paleoecological Research: A Case Study of Phytoliths from Modern Neotropical Plants and a Review of the Previous Dating Evidence”, Journal of Archaeological Science (2015), doi: 10.1016/j.jas.2015.06.002.” by Dolores R. Piperno G. Santos et al. 10.1016/j.jas.2016.04.015
- Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems Z. Song et al. 10.1016/j.earscirev.2016.04.007
- TEMPORARY REMOVAL: High potential of phytoliths in terrestrial carbon sequestration at a centennial–millennial scale: Reply to comments by Santos and Alexandre Z. Song et al. 10.1016/j.earscirev.2016.11.001
- Plant Silicon and Phytolith Research and the Earth-Life Superdiscipline O. Katz 10.3389/fpls.2018.01281
- pH-dependent silicon release from phytoliths of Norway spruce (Picea abies) Z. Lisztes-Szabó et al. 10.1007/s10933-019-00103-2
- Silicon Fertilization for Carbon Sequestration Through PhytOC Production in Plants M. Suji et al. 10.1080/00103624.2024.2413535
- In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography Y. Weng et al. 10.5194/bg-15-3133-2018
- Silicon in the Soil–Plant Continuum: Intricate Feedback Mechanisms within Ecosystems O. Katz et al. 10.3390/plants10040652
- A review of carbon isotopes of phytoliths: implications for phytolith-occluded carbon sources S. Yang et al. 10.1007/s11368-019-02548-4
- Plant growth conditions alter phytolith carbon K. Gallagher et al. 10.3389/fpls.2015.00753
- Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change Z. Song et al. 10.1016/j.earscirev.2018.06.020
- When the carbon being dated is not what you think it is: Insights from phytolith carbon research G. Santos et al. 10.1016/j.quascirev.2018.08.007
- Siliplant1 protein precipitates silica in sorghum silica cells S. Kumar et al. 10.1093/jxb/eraa258
- Combined Silicon-Phosphorus Fertilization Affects the Biomass and Phytolith Stock of Rice Plants Z. Li et al. 10.3389/fpls.2020.00067
- Silicon en route - from loam to leaf A. Wani et al. 10.1007/s10725-022-00931-9
- Testing phytolith analysis approaches to estimate the prehistoric anthropogenic burning regime on the central California coast R. Evett & R. Cuthrell 10.1016/j.quaint.2015.10.070
- Interplay between silica deposition and viability during the life span of sorghum silica cells S. Kumar & R. Elbaum 10.1111/nph.14867
- The Relative Importance of Cell Wall and Lumen Phytoliths in Carbon Sequestration in Soil: A Hypothesis M. Hodson 10.3389/feart.2019.00167
- Earliest Musa banana from the late Quaternary sequence at Fahien Rock Shelter in Sri Lanka R. Premathilake & C. Hunt 10.1002/jqs.3041
- Role of silicon in phytolith-occluded carbon (PhytOC) sequestration I. Rehman & I. Rashid 10.1007/s42535-023-00659-5
- A new method for extracting the insoluble occluded carbon in archaeological and modern phytoliths: Detection of 14C depleted carbon fraction and implications for radiocarbon dating Y. Asscher et al. 10.1016/j.jas.2016.11.005
- Copper encapsulated in grass-derived phytoliths: Characterization, dissolution properties and the relation of content to soil properties T. Tran et al. 10.1016/j.jenvman.2019.109423
- Silica deposition in plants: scaffolding the mineralization N. Zexer et al. 10.1093/aob/mcad056
- Unambiguous evidence of old soil carbon in grass biosilica particles P. Reyerson et al. 10.5194/bg-13-1269-2016
- Burned phytoliths absorbing black carbon as a potential proxy for paleofire H. Dong et al. 10.1177/09596836221074033
- Encapsulation of lead in rice phytoliths as a possible pollutant source in paddy soils T. Nguyen et al. 10.1016/j.envexpbot.2019.02.009
- Silicon content is a plant functional trait: implications in a changing world O. Katz 10.1016/j.flora.2018.08.007
- Characterization and implication of phytolith-associated potassium in rice straw and paddy soils H. Nguyen et al. 10.1080/03650340.2018.1564908
- Phytolith carbon sequestration in global terrestrial biomes Z. Song et al. 10.1016/j.scitotenv.2017.06.107
- Conversion from tussock grassland to pine forest: effect on soil phytoliths and phytolith-occluded carbon (PhytOC) X. Li et al. 10.1007/s11368-018-2160-7
- The potential of sodium carbonate and Tiron extractions for the determination of silicon contents in plant samples—A method comparison using hydrofluoric acid digestion as reference D. Puppe et al. 10.3389/fenvs.2023.1145604
- Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence A. Alexandre et al. 10.5194/bg-13-1693-2016
- Phytolith profile of Acrachne racemosa (B. Heyne ex Roem. & Schult.) Ohwi (Cynodonteae, Chloridoideae, Poaceae) P. Badgal et al. 10.1371/journal.pone.0263721
- Phytolith‐occluded carbon in leaves of Dendrocalamus Ronganensis influenced by drought during growing season R. Li et al. 10.1111/ppl.13748
- Silicification in Grasses: Variation between Different Cell Types S. Kumar et al. 10.3389/fpls.2017.00438
Saved (final revised paper)
Saved (preprint)
Latest update: 21 Jan 2025
Short summary
Phytoliths contain occluded organic compounds called phytC. The nature and location of phytC in biogenic silica structures is poorly understood. Here, we reconstructed the 3-D structure of phytoliths using 3-D Xray microscopy. We further evidenced a pool of phytC, continuously distributed in the silica structure, using nanoscale secondary ion mass spectrometry (NanoSIMS). Our findings allowed the re-evaluation of previous suggestions regarding phytC quantification and environmental meaning.
Phytoliths contain occluded organic compounds called phytC. The nature and location of phytC in...
Altmetrics
Final-revised paper
Preprint