Articles | Volume 13, issue 5
https://doi.org/10.5194/bg-13-1677-2016
https://doi.org/10.5194/bg-13-1677-2016
Research article
 | 
18 Mar 2016
Research article |  | 18 Mar 2016

Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters

Josiane Mélançon, Maurice Levasseur, Martine Lizotte, Michael Scarratt, Jean-Éric Tremblay, Philippe Tortell, Gui-Peng Yang, Guang-Yu Shi, Huiwang Gao, David Semeniuk, Marie Robert, Michael Arychuk, Keith Johnson, Nes Sutherland, Marty Davelaar, Nina Nemcek, Angelica Peña, and Wendy Richardson

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (24 Dec 2015) by Koji Suzuki
AR by Josiane Mélançon on behalf of the Authors (08 Jan 2016)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (08 Jan 2016) by Koji Suzuki
RR by Anonymous Referee #1 (16 Jan 2016)
RR by Anonymous Referee #2 (25 Jan 2016)
ED: Publish subject to minor revisions (Editor review) (07 Feb 2016) by Koji Suzuki
AR by Josiane Mélançon on behalf of the Authors (13 Feb 2016)  Author's response    Manuscript
ED: Publish subject to technical corrections (21 Feb 2016) by Koji Suzuki
Download
Short summary
Ocean acidification is likely to affect iron-limited phytoplankton fertilization by desert dust. Short incubations of northeast subarctic Pacific waters enriched with dust and set at pH 8.0 and 7.8 were conducted. Acidification led to a significant reduction (by 16–38 %) of the final concentration of chl a reached after enrichment. These results show that dust deposition events in a low-pH iron-limited ocean are likely to stimulate phytoplankton growth to a lesser extent than in today's ocean.
Altmetrics
Final-revised paper
Preprint