Chen, X. P., Zhu, Y. G., Xia, Y., Shen, J. P., and He, J. Z.: Ammonia oxidizing archaea: important players in paddy rhizosphere soil?, Environ. Microbiol., 10, 1978–1987, 2008.
De la Torre, J., Walker, C., Ingalls, A., Koenneke, M., and Stahl, D.: Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol, Environ. Microbiol., 10, 810–818, 2008.
Delong, E. F.: Archaea in coastal marine environments, P. Natl. Acad. Sci. USA, 89, 5685–5689, 1992.
Dodsworth, J. A., Hungate, B., Torre, J., Jiang, H., and Hedlund, B. P.: Measuring nitrification, denitrification, and related biomarkers in continental geothermal ecosystems, Methods Enzymol., 486, 171–203, 2011a.
Dodsworth, J. A., Hungate, B. A., and Hedlund, B. P.: Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea, Environ. Microbiol., 13, 2371–2386, 2011b.
Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B.: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean, P. Natl. Acad. Sci. USA, 102, 14683–14688, 2005.
Gerbl, F. W., Weidler, G. W., Wanek, W., Erhardt, A., and Stan-Lotter, H.: Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps, Front. Microbiol., 5, 1–17, https://doi.org/10.3389/fmicb.2014.00225, 2014.
Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B. C., James, P., Schloter, M., Griffiths, R. I., Prosser, J. I., and Nicol, G. W.: Niche specialization of terrestrial archaeal ammonia oxidizers, P. Natl. Acad. Sci. USA, 108, 21206–21211, 2011.
Hatzenpichler, R., Lebedeva, E., Spieck, E., Stoecker, K., Richter, A., Daims, H., and Wagner, M.: A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring, P. Natl. Acad. Sci. USA, 105, 2134–2139, 2008.
He, J., Shen, J., Zhang, L., Zhu, Y., Zheng, Y., Xu, M., and Di, H.: Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices, Environ. Microbiol., 9, 2364–2374, 2007.
Hou, W. G., Wang, S., Dong, H. L., Jiang, H. C., Briggs, B. R., Peacock, J. P., Huang, Q. Y., Huang, L. Q., Wu, G., Zhi, X. Y., Li, W. J., Dodsworth, J. A., Hedlund, B. P., Zhang, C. L., Hartnett, H. E., Dijkstra, P., and Hungate, B. A.: A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing, PLoS One, 8, e53350, https://doi.org/10.1371/journal.pone.0053350, 2013.
Isobe, K., Koba, K., Suwa, Y., Ikutani, J., Fang, Y. T., Yoh, M., Mo, J. M., Otsuka, S., and Senoo, K.: High abundance of ammonia-oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition, FEMS Microbiol. Ecol., 80, 193–203, 2012.
Jia, Z. J. and Conrad, R.: Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil, Environ. Microbiol. 11, 1658–1671, 2009.
Jiang, H. C., Huang, Q. Y., Dong, H. L., Wang, P., Wang, F. P., Li, W. J., and Zhang, C. L.: RNA-based investigation of ammonia oxidizing archaea in hot springs of Yunnan Province, China, Appl. Environ. Microbiol., 76, 4538–4541, 2010.
Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A. L., and Lovley, D. R.: Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor, Int. J. Syst. Evol. Microbiol., 52, 719–728, 2002.
Konneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A.: Isolation of an autotrophic ammonia-oxidizing marine archaeon, Nature, 437, 543–546, 2005.
Labrenz, M., Sintes, E., Toetzke, F., Zumsteg, A., Herndl, G., Seidler, M., and Jurgens, K.: Relevance of a crenarchaeotal subcluster related to Candidatus Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone of the central Baltic Sea, ISME J., 4, 1496–1508, 2010.
Lane, D. J.: 16S/23S rRNA sequencing, in: Nucleic acid techniques in bacterial systematics, edited by: Stackebrandt, E. and Goodfellow, M., Wiley, Chichester, UK, 115–175, 1991.
Lebedeva, E. V., Alawi, M., Fiencke, C., Namsaraev, B., Bock, E., and Spieck, E.: Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone, FEMS Microbiol. Ecol., 54, 297–306, 2005.
Li, H. Z., Yang, Q. H., Li, J., Gao, H., Li, P., and Zhou, H.: The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China, Sci. Rep., 5, 1–12, https://doi.org/10.1038/srep17056, 2015.
Murray, A. E., Preston, C. M., Massana, R., Taylor, L. T., Blakis, A., Wu, K., and DeLong, E. F.: Seasonal and Spatial Variability of Bacterial and Archaeal Assemblages in the Coastal Waters near Anvers Island, Antarctica, Appl. Environ. Microbiol., 64, 2585–2595, 1998.
Muyzer, G, de Waal, E. C., and Uitterlinden, A. G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol., 59, 695–700, 1993.
Nishizawa, M., Koba, K., Makabe, A., Yoshida, N., Kaneko, M., Hirao, S., Ishibashi, J. I., Yamanaka, T., Shibuya, T., Kikuchi, T., Hirai, M., Miyazaki, J., Nunoura, T., and Takai, K.: Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream, Geochim. Cosmochim. Ac., 113, 152–173, 2013.
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D., and DeLong, E. F.: Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments, P. Natl. Acad. Sci. USA, 99, 7663–7668, 2002.
Orphan, V. J., Turk, K. A., Green, A. M., and House, C. H.: Patterns of
15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS, Environ. Microbiol., 11, 1777–1791, 2009.
Øvreas, L., Jensen, S., Daae, F. L., and Torsvik, V.: Microbial community changes in a perturbed agricultural soil investigated by molecular and physiological approaches, Appl. Environ. Microbiol., 64, 2739–2742, 1998.
Park, S. J., Park, B. J., and Rhee, S. K.: Comparative analysis of archaeal 16S rRNA and
amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments, Extremophiles, 12, 605–615, 2008.
Pearson, A., Pi, Y., Zhao, W., Li, W., Li, Y.-L., Inskeep, W., Perevalova, A., Romanek, C., Li, S. G., and Zhang, C. L.: Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs, Appl. Environ. Microbiol., 74, 3523–3532, 2008.
Pernthaler, J., Glockner, F. O., Schonhuber, W., and Amann, R.: Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes, in: Methods in microbiology: Marine microbiology Academic Press, edited by: Paul, J. H., San diego, San Francisco, New York, Boston London, Sydney, Tokyo, 207–226, 2001.
Pester, M., Rattei, T., Flechl, S., Grongroft, A., Richter, A., Overmann, J., Reinhold-Hurek, B., Loy, A., and Wagner, M.: amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of
amoA genes from soils of four different geographic regions, Environ. Microbiol., 14, 525–539, 2012.
Prosser, J. I. and Nicol, G. W.: Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment, Environ. Microbiol., 10, 2931–2941, 2008.
Reigstad, L., Richter, A., Daims, H., Urich, T., Schwark, L., and Schleper, C.: Nitrification in terrestrial hot springs of Iceland and Kamchatka, FEMS Microbiol. Ecol., 64, 167–174, 2008.
Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase structural gene
amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations, Appl. Environ. Microbiol., 63, 4704–4712, 1997.
Shock, E. L., Holland, M., Meyer-Dombard, D. R., and Amend, J. P.: Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems: Obsidian Pool, Yellowstone National Park, USA, in: Geothermal biology and geochemistry in Yellowstone National Park, edited by: Inskeep, W. P. and McDermott, T. R., 1, 95–112, 2005.
Spear, J. R., Barton, H. A., Robertson, C. E., Francis, C. A., and Pace, N. R.: Microbial Community Biofabrics in a Geothermal Mine Adit, Appl. Environ. Microbiol., 73, 6172–6180, 2007.
Treusch, A., Leininger, S.,, Kletzin, Schuster, S., Klenk, H., and Schleper, C.: Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling, Environ. Microbiol., 7, 1985–1995, 2005.
Vitousek, P. M., Aber, J., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., and Tilman, G. D.: Human alteration of the global nitrogen cycle: Causes and consequences, Ecological. Appl., 7, 737–750, 1997.
Wang, S., Xiao, X., Jiang, L., Peng, X., Zhou, H., Meng, J., and Wang, F.: Diversity and abundance of ammonia-oxidizing Archaea in hydrothermal vent chimneys of the Juan de Fuca Ridge, Appl. Environ. Microbiol., 75, 4216–4220, 2009.
Weidler, G. W., Dornmayr-Pfaffenhuemer, M., Gerbl, F. W., Heinen, W., and Stan-Lotter, H.: Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota, Appl. Environ. Microbiol., 73, 259–270, 2007.
White, J. R. and Reddy, K. R.: Potential nitrification and denitrification rates in a phosphorous-impacted subtropical peatland, J. Environ. Qual., 32, 2436–2443, 2003.
Xie, W., Zhang, C. L., Wang, J., Chen, Y., Zhu, Y., Torre, J. R., Dong, H., Hartnett, H. E., Hedlund, B. P., and Klotz, M. G.: Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables, Environ. Microbiol., 17, 1–15, https://doi.org/10.1111/1462-2920.12595, 2014.
Zhang, C. L., Ye, Q., Huang, Z., Li, W., Chen, J., Song, Z., Zhao, W., Bagwell, C., Inskeep, W. P., Ross, C., Gao, L., Wiegel, J., Romanek, C. S., Shock, E. L., and Hedlund, B. P.: Global occurrence of archaeal
amoA genes in terrestrial hot springs, Appl. Environ. Microb., 74, 6417–6426, 2008a.
Zhang, G., Liu, C. Q., Liu, H., Jin, Z., Han, G., and Li, L.: Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China, Geothermics, 37, 73–83, 2008b.