Articles | Volume 13, issue 7
https://doi.org/10.5194/bg-13-2051-2016
https://doi.org/10.5194/bg-13-2051-2016
Research article
 | 
07 Apr 2016
Research article |  | 07 Apr 2016

Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

Shun Chen, Xiaotong Peng, Hengchao Xu, and Kaiwen Ta

Related authors

Formation and origin of Fe-Si oxyhydroxide deposits at the ultra-slow spreading Southwest Indian Ridge
Kaiwen Ta, Zijun Wu, Xiaotong Peng, and Zhaofu Luan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-315,https://doi.org/10.5194/bg-2019-315, 2019
Revised manuscript not accepted
Short summary

Related subject area

Astrobiology and Exobiology: Extreme Environments, Brines & Hydrothermal
Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge
Yann Lelièvre, Jozée Sarrazin, Julien Marticorena, Gauthier Schaal, Thomas Day, Pierre Legendre, Stéphane Hourdez, and Marjolaine Matabos
Biogeosciences, 15, 2629–2647, https://doi.org/10.5194/bg-15-2629-2018,https://doi.org/10.5194/bg-15-2629-2018, 2018
Short summary
Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia)
C. Monnin, V. Chavagnac, C. Boulart, B. Ménez, M. Gérard, E. Gérard, C. Pisapia, M. Quéméneur, G. Erauso, A. Postec, L. Guentas-Dombrowski, C. Payri, and B. Pelletier
Biogeosciences, 11, 5687–5706, https://doi.org/10.5194/bg-11-5687-2014,https://doi.org/10.5194/bg-11-5687-2014, 2014
Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community
L. A. Ziolkowski, N. C. S. Mykytczuk, C. R. Omelon, H. Johnson, L. G. Whyte, and G. F. Slater
Biogeosciences, 10, 7661–7675, https://doi.org/10.5194/bg-10-7661-2013,https://doi.org/10.5194/bg-10-7661-2013, 2013
Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments
D. de Beer, M. Haeckel, J. Neumann, G. Wegener, F. Inagaki, and A. Boetius
Biogeosciences, 10, 5639–5649, https://doi.org/10.5194/bg-10-5639-2013,https://doi.org/10.5194/bg-10-5639-2013, 2013
Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge
A. Bourbonnais, S. K. Juniper, D. A. Butterfield, A. H. Devol, M. M. M. Kuypers, G. Lavik, S. J. Hallam, C. B. Wenk, B. X. Chang, S. A. Murdock, and M. F. Lehmann
Biogeosciences, 9, 4661–4678, https://doi.org/10.5194/bg-9-4661-2012,https://doi.org/10.5194/bg-9-4661-2012, 2012

Cited articles

Alves, R. J., Wanek, W., Zappe, A., Richter, A., Svenning, M. M., Schleper, C., and Urich, T.: Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea, ISME J., 7, 1620–1631, 2013.
Appelo, C. A. J. and Postma, D.: Geochemistry, groundwater, and pollution, Balkema, Rotterdam, 1996.
Barraclough, D.: The use of mean pool abundances to interpret l5N tracer experiments, Plant Soil, 131, 89–96, 1991.
Beman, J. M., Popp, B. N., and Francis, C. A.: Molecular and biogeochemical evidence for ammonia oxidation by marine crenarchaeota in the Gulf of California, ISME J., 2, 429–441, 2008.
Bernander, R. and Poplawski.: A Cell cycle characteristics of thermophilic archaea, J. Bacteriol., 179, 4963–4969, 1997.
Download
Short summary
The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, in combination of culture-independent and culture-dependent approaches, we provide direct evidences that ammonia-oxidizing Archaea (AOA) are indeed responsible for the major portion of ammonia oxidation in high-temperature hot springs.
Altmetrics
Final-revised paper
Preprint