Articles | Volume 13, issue 8
https://doi.org/10.5194/bg-13-2279-2016
https://doi.org/10.5194/bg-13-2279-2016
Research article
 | 
19 Apr 2016
Research article |  | 19 Apr 2016

Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia

Karen E. Frey, William V. Sobczak, Paul J. Mann, and Robert M. Holmes

Abstract. The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a  ∼  250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ∼  3–6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a) aquatic microorganisms are acclimating to a downstream shift in DOM composition and/or (b) photodegradation is continually generating labile DOM for continued microbial processing of DOM along the flow-path continuum. Without such processes, we would otherwise expect to see a declining fraction of bioavailable DOC downstream with increasing residence time of water in the system. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the northeast Siberian region will become more hydrologically active, providing greater amounts of DOM to fluvial networks and ultimately to the Arctic Ocean. The ability to rapidly and comprehensively monitor shifts in the quantity and quality of DOM across the landscape is therefore critical for understanding potential future feedbacks within the Arctic carbon cycle.

Download
Short summary
In this study, we provide new findings with regards to the spatial distribution of dissolved organic matter (DOM) concentration, bioavailability, and optical properties during mid-summer hydrologic conditions throughout the Kolyma River basin in northeast Siberia. This is particularly critical for this region, where the future fate of organic carbon currently frozen in permafrost soils (and whether it ultimately is released as CO2 and CH4) is tightly linked to the lability of this material.
Altmetrics
Final-revised paper
Preprint