Articles | Volume 13, issue 12
https://doi.org/10.5194/bg-13-3807-2016
https://doi.org/10.5194/bg-13-3807-2016
Research article
 | 
01 Jul 2016
Research article |  | 01 Jul 2016

Subalpine grassland carbon balance during 7 years of increased atmospheric N deposition

Matthias Volk, Jan Enderle, and Seraina Bassin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (23 May 2016) by Edzo Veldkamp
AR by Matthias Volk on behalf of the Authors (24 May 2016)
ED: Publish as is (08 Jun 2016) by Edzo Veldkamp
AR by Matthias Volk on behalf of the Authors (08 Jun 2016)
Download
Short summary
Grasslands hold 28 % of global soil organic carbon (SOC). We studied carbon-fluxes and -pools in subalpine grassland under atmospheric nitrogen (N) deposition (air pollution) treatment. Unlike plant yield, SOC and CO2 gains were largest at intermediate, not maximum N deposition. Thus, N deposition driven plant yield increases may not be considered as a valid proxy for ecosystem C-pool increases and the biological sink for CO2 greenhouse gas may be smaller under higher N deposition.
Altmetrics
Final-revised paper
Preprint