Articles | Volume 13, issue 22
https://doi.org/10.5194/bg-13-6353-2016
https://doi.org/10.5194/bg-13-6353-2016
Research article
 | 
28 Nov 2016
Research article |  | 28 Nov 2016

Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature

Benoit Kéraval, Anne Catherine Lehours, Jonathan Colombet, Christian Amblard, Gaël Alvarez, and Sébastien Fontaine

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (06 Sep 2016) by Elise Pendall
AR by Anna Wenzel on behalf of the Authors (21 Sep 2016)  Author's response
ED: Publish subject to technical corrections (22 Sep 2016) by Elise Pendall
AR by Kéraval Benoit on behalf of the Authors (19 Oct 2016)  Author's response    Manuscript
Download
Short summary
Soil CO2 emissions are a major determinant of the carbon (C) cycle and its interactions with climate. Here, we show that soil CO2 emissions have two origins: (1) the well-known microbial cell respiration and (2) an extracellular oxidative metabolism (EXOMET) carried out by soil-stabilized enzymes and mineral catalysts. These two metabolisms have distinct C isotope signatures, allowing their detection in soil CO2 emissions.
Altmetrics
Final-revised paper
Preprint