Articles | Volume 14, issue 6
https://doi.org/10.5194/bg-14-1493-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-1493-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Physiology regulates the relationship between coccosphere geometry and growth phase in coccolithophores
Rosie M. Sheward
CORRESPONDING AUTHOR
Ocean and Earth Science, University of Southampton, National
Oceanography Centre, Southampton, SO14 3ZH, UK
Institute of Geosciences, Goethe University Frankfurt, 60438
Frankfurt am Main, Germany
Alex J. Poulton
Ocean Biogeochemistry and Ecosystems, National Oceanography Centre,
Southampton, SO14 3ZH, UK
Samantha J. Gibbs
Ocean and Earth Science, University of Southampton, National
Oceanography Centre, Southampton, SO14 3ZH, UK
Chris J. Daniels
Ocean Biogeochemistry and Ecosystems, National Oceanography Centre,
Southampton, SO14 3ZH, UK
Paul R. Bown
Department of Earth Sciences, University College London, Gower
Street, London, WC1E 6BT, UK
Viewed
Total article views: 2,890 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Nov 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,488 | 1,287 | 115 | 2,890 | 188 | 107 | 115 |
- HTML: 1,488
- PDF: 1,287
- XML: 115
- Total: 2,890
- Supplement: 188
- BibTeX: 107
- EndNote: 115
Total article views: 2,119 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Mar 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,272 | 741 | 106 | 2,119 | 188 | 106 | 107 |
- HTML: 1,272
- PDF: 741
- XML: 106
- Total: 2,119
- Supplement: 188
- BibTeX: 106
- EndNote: 107
Total article views: 771 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Nov 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
216 | 546 | 9 | 771 | 1 | 8 |
- HTML: 216
- PDF: 546
- XML: 9
- Total: 771
- BibTeX: 1
- EndNote: 8
Viewed (geographical distribution)
Total article views: 2,890 (including HTML, PDF, and XML)
Thereof 2,718 with geography defined
and 172 with unknown origin.
Total article views: 2,119 (including HTML, PDF, and XML)
Thereof 2,045 with geography defined
and 74 with unknown origin.
Total article views: 771 (including HTML, PDF, and XML)
Thereof 673 with geography defined
and 98 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
25 citations as recorded by crossref.
- Coccolithophore growth and calcification in a changing ocean K. Krumhardt et al. 10.1016/j.pocean.2017.10.007
- Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene–Eocene Thermal Maximum S. Gibbs et al. 10.1098/rsta.2017.0075
- Inferred nutrient forcing on the late middle Eocene to early Oligocene (~40–31 Ma) evolution of the coccolithophore Reticulofenestra (order Isochrysidales) R. Ma et al. 10.1017/pab.2023.20
- Strain-specific morphological response of the dominant calcifying phytoplankton species Emiliania huxleyi to salinity change C. Gebühr et al. 10.1371/journal.pone.0246745
- Size and shape variation in the calcareous nannoplankton genusBraarudosphaerafollowing the Cretaceous/Paleogene (K/Pg) mass extinction: clues as to its evolutionary success H. Jones et al. 10.1017/pab.2021.15
- A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore <i>Helicosphaera</i> and its biogeochemical implications L. Šupraha & J. Henderiks 10.5194/bg-17-2955-2020
- CASCADE: Dataset of extant coccolithophore size, carbon content and global distribution J. de Vries et al. 10.1038/s41597-024-03724-z
- Calcareous Nannofossil Size and Abundance Response to the Messinian Salinity Crisis Onset and Paleoenvironmental Dynamics A. Mancini et al. 10.1029/2020PA004155
- Counting microalgae cultures with a stereo microscope and a cell phone using deep learning online resources M. Proença et al. 10.1186/s42269-022-00965-z
- Estimating Coccolithophore PIC:POC Based on Coccosphere and Coccolith Geometry X. Jin & C. Liu 10.1029/2022JG007355
- Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015) K. Mayers et al. 10.1016/j.pocean.2018.02.024
- Cellular morphological trait dataset for extant coccolithophores from the Atlantic Ocean R. Sheward et al. 10.1038/s41597-024-03544-1
- The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores W. Balch 10.1146/annurev-marine-121916-063319
- Coccolith arrangement follows Eulerian mathematics in the coccolithophoreEmiliania huxleyi K. Xu et al. 10.7717/peerj.4608
- Exploration of potential jarosite biomineralization mechanism based on extracellular polymer substances of Purpureocillium lilacinum Y3 M. Xia et al. 10.1016/j.ibiod.2020.104941
- Insensitivity of alkenone carbon isotopes to atmospheric CO<sub>2</sub> at low to moderate CO<sub>2</sub> levels M. Badger et al. 10.5194/cp-15-539-2019
- Application of the kinetic and isotherm models for better understanding of the mechanism of biomineralization process induced by Purpureocillium lilacinum Y3 M. Xia et al. 10.1016/j.colsurfb.2019.05.051
- Adaptations of Coccolithophore Size to Selective Pressures During the Oligocene to Early Miocene High CO2 World J. Guitián et al. 10.1029/2020PA003918
- Coccolith size rules – What controls the size of coccoliths during coccolithogenesis? B. Suchéras-Marx et al. 10.1016/j.marmicro.2021.102080
- Phosphorus limitation and heat stress decrease calcification in <i>Emiliania huxleyi</i> A. Gerecht et al. 10.5194/bg-15-833-2018
- Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2 L. Claxton et al. 10.1038/s41561-022-01006-0
- Why Do Bio-Carbonates Exist? L. Pomar et al. 10.3390/jmse10111648
- Evolutionary Rates in the Haptophyta: Exploring Molecular and Phenotypic Diversity J. Henderiks et al. 10.3390/jmse10060798
- Coccolith volume of the Southern Ocean coccolithophore Emiliania huxleyi as a possible indicator for palaeo‐cell volume M. Müller et al. 10.1111/gbi.12414
- Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past? G. Faucher et al. 10.5194/cp-16-1007-2020
25 citations as recorded by crossref.
- Coccolithophore growth and calcification in a changing ocean K. Krumhardt et al. 10.1016/j.pocean.2017.10.007
- Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene–Eocene Thermal Maximum S. Gibbs et al. 10.1098/rsta.2017.0075
- Inferred nutrient forcing on the late middle Eocene to early Oligocene (~40–31 Ma) evolution of the coccolithophore Reticulofenestra (order Isochrysidales) R. Ma et al. 10.1017/pab.2023.20
- Strain-specific morphological response of the dominant calcifying phytoplankton species Emiliania huxleyi to salinity change C. Gebühr et al. 10.1371/journal.pone.0246745
- Size and shape variation in the calcareous nannoplankton genusBraarudosphaerafollowing the Cretaceous/Paleogene (K/Pg) mass extinction: clues as to its evolutionary success H. Jones et al. 10.1017/pab.2021.15
- A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore <i>Helicosphaera</i> and its biogeochemical implications L. Šupraha & J. Henderiks 10.5194/bg-17-2955-2020
- CASCADE: Dataset of extant coccolithophore size, carbon content and global distribution J. de Vries et al. 10.1038/s41597-024-03724-z
- Calcareous Nannofossil Size and Abundance Response to the Messinian Salinity Crisis Onset and Paleoenvironmental Dynamics A. Mancini et al. 10.1029/2020PA004155
- Counting microalgae cultures with a stereo microscope and a cell phone using deep learning online resources M. Proença et al. 10.1186/s42269-022-00965-z
- Estimating Coccolithophore PIC:POC Based on Coccosphere and Coccolith Geometry X. Jin & C. Liu 10.1029/2022JG007355
- Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015) K. Mayers et al. 10.1016/j.pocean.2018.02.024
- Cellular morphological trait dataset for extant coccolithophores from the Atlantic Ocean R. Sheward et al. 10.1038/s41597-024-03544-1
- The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores W. Balch 10.1146/annurev-marine-121916-063319
- Coccolith arrangement follows Eulerian mathematics in the coccolithophoreEmiliania huxleyi K. Xu et al. 10.7717/peerj.4608
- Exploration of potential jarosite biomineralization mechanism based on extracellular polymer substances of Purpureocillium lilacinum Y3 M. Xia et al. 10.1016/j.ibiod.2020.104941
- Insensitivity of alkenone carbon isotopes to atmospheric CO<sub>2</sub> at low to moderate CO<sub>2</sub> levels M. Badger et al. 10.5194/cp-15-539-2019
- Application of the kinetic and isotherm models for better understanding of the mechanism of biomineralization process induced by Purpureocillium lilacinum Y3 M. Xia et al. 10.1016/j.colsurfb.2019.05.051
- Adaptations of Coccolithophore Size to Selective Pressures During the Oligocene to Early Miocene High CO2 World J. Guitián et al. 10.1029/2020PA003918
- Coccolith size rules – What controls the size of coccoliths during coccolithogenesis? B. Suchéras-Marx et al. 10.1016/j.marmicro.2021.102080
- Phosphorus limitation and heat stress decrease calcification in <i>Emiliania huxleyi</i> A. Gerecht et al. 10.5194/bg-15-833-2018
- Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2 L. Claxton et al. 10.1038/s41561-022-01006-0
- Why Do Bio-Carbonates Exist? L. Pomar et al. 10.3390/jmse10111648
- Evolutionary Rates in the Haptophyta: Exploring Molecular and Phenotypic Diversity J. Henderiks et al. 10.3390/jmse10060798
- Coccolith volume of the Southern Ocean coccolithophore Emiliania huxleyi as a possible indicator for palaeo‐cell volume M. Müller et al. 10.1111/gbi.12414
- Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past? G. Faucher et al. 10.5194/cp-16-1007-2020
Discussed (preprint)
Latest update: 23 Nov 2024
Short summary
Our culture experiments on modern Coccolithophores find that physiology regulates shifts in the geometry of their carbonate shells (coccospheres) between growth phases. This provides a tool to access growth information in modern and past populations. Directly comparing modern species with fossil coccospheres derives a new proxy for investigating the physiology that underpins phytoplankton responses to environmental change through geological time.
Our culture experiments on modern Coccolithophores find that physiology regulates shifts in the...
Altmetrics
Final-revised paper
Preprint