Articles | Volume 14, issue 9
Biogeosciences, 14, 2293–2306, 2017
Biogeosciences, 14, 2293–2306, 2017

Research article 05 May 2017

Research article | 05 May 2017

Quantification of dynamic soil–vegetation feedbacks following an isotopically labelled precipitation pulse

Arndt Piayda1,*, Maren Dubbert2,*, Rolf Siegwolf3, Matthias Cuntz4, and Christiane Werner2 Arndt Piayda et al.
  • 1Thünen Institute of Climate-Smart Agriculture, 38116 Braunschweig, Germany
  • 2Ecosystem Physiology, University Freiburg, 79110 Freiburg, Germany
  • 3Lab for Atmospheric Chemistry, Ecosystems and Stable Isotope Research, Paul Scherrer Institut, 5232 Villingen PSI, Switzerland
  • 4UMR Ecologie et Ecophysiologie Forestières, UMR1137, INRA-Université de Lorraine, Champenoux-54500 Vandoeuvre Les Nancy, 54280, France
  • *These authors contributed equally to this work.

Abstract. The presence of vegetation alters hydrological cycles of ecosystems. Complex plant–soil interactions govern the fate of precipitation input and water transitions through ecosystem compartments. Disentangling these interactions is a major challenge in the field of ecohydrology and a pivotal foundation for understanding the carbon cycle of semi-arid ecosystems. Stable water isotopes can be used in this context as tracer to quantify water movement through soil–vegetation–atmosphere interfaces.

The aim of this study is to disentangle vegetation effects on soil water infiltration and distribution as well as dynamics of soil evaporation and grassland water use in a Mediterranean cork oak woodland during dry conditions. An irrigation experiment using δ18O labelled water was carried out in order to quantify distinct effects of tree and herbaceous vegetation on the infiltration and distribution of event water in the soil profile. Dynamic responses of soil and herbaceous vegetation fluxes to precipitation regarding event water use, water uptake depth plasticity, and contribution to ecosystem soil evaporation and transpiration were quantified.

Total water loss to the atmosphere from bare soil was as high as from vegetated soil, utilizing large amounts of unproductive evaporation for transpiration, but infiltration rates decreased. No adjustments of main root water uptake depth to changes in water availability could be observed during the experiment. This forces understorey plants to compete with adjacent trees for water in deeper soil layers at the onset of summer. Thus, understorey plants are subjected to chronic water deficits faster, leading to premature senescence at the onset of drought. Despite this water competition, the presence of cork oak trees fosters infiltration and reduces evapotranspirative water losses from the understorey and the soil, both due to altered microclimatic conditions under crown shading. This study highlights complex soil–plant–atmosphere and inter-species interactions controlling rain pulse transitions through a typical Mediterranean savannah ecosystem, disentangled by the use of stable water isotopes.

Short summary
Complex plant–soil interactions in the hydrological cycle of a Mediterranean cork oak ecosystem are investigated with stable water isotopes. Trees largely foster infiltration due to altered microclimatic conditions below crowns but compete with understorey plants for the same water source in deeper soil layers. The presence of understorey plants does not alter water losses compared to bare soil, but water utilization for carbon sequestration and nitrogen fixation is largely increased.
Final-revised paper