Articles | Volume 14, issue 10
https://doi.org/10.5194/bg-14-2597-2017
https://doi.org/10.5194/bg-14-2597-2017
Research article
 | 
22 May 2017
Research article |  | 22 May 2017

The influence of episodic flooding on a pelagic ecosystem in the East China Sea

Chung-Chi Chen, Gwo-Ching Gong, Wen-Chen Chou, Chih-Ching Chung, Chih-Hao Hsieh, Fuh-Kwo Shiah, and Kuo-Ping Chiang

Abstract. This study was designed to determine the effects of flooding on a pelagic ecosystem in the East China Sea (ECS) with a focus on plankton activity and plankton community respiration (CR). In July 2010, a flood occurred in the Changjiang River. As a comparison, a variety of abiotic and biotic parameters were monitored during this flooding event and during a non-flooding period (July 2009). During the flood, the Changjiang diluted water (CDW) zone covered almost two-thirds of the ECS, which was approximately 6 times the area covered during the non-flooding period. The mean nitrate concentration was 3-fold higher during the 2010 flood (6.2 vs. 2.0 µM in 2009). CR was also higher in the 2010 flood: 105.6 mg C m−3 d−1 vs. only 73.2 mg C m−3 d−1 in 2009. The higher CR in 2010 could be attributed to phytoplankton respiration, especially at stations in the CDW zone that were not previously characterized by low sea surface salinity in 2009. In addition, zooplankton (> 330 µm) were another important component contributing to the high CR rate observed during the 2010 flood; this was a period also associated with a significant degree of fCO2 drawdown. These results collectively suggest that the 2010 flood had a significant effect on the carbon balance in the ECS. This effect might become more pronounced in the future, as extreme rainfall and flooding events are predicted to increase in both frequency and magnitude due to climate change.

Download
Short summary
To understand the flooding effects on a pelagic ecosystem in the East China Sea (ECS), a variety of variables were measured in 2009 (non-flood) and 2010 (flood). In 2010, the organic carbon consumption was higher than in 2009; this could be attributed to the vigorous plankton activities observed in low-salinity areas. A huge amount of f CO2 was also drawn down in the flood. This flood effect might become more pronounced as extreme rainfall events increase dramatically throughout the world.
Altmetrics
Final-revised paper
Preprint