Articles | Volume 14, issue 22
Biogeosciences, 14, 5217–5237, 2017
https://doi.org/10.5194/bg-14-5217-2017

Special issue: The Ocean in a High-CO2 World IV

Biogeosciences, 14, 5217–5237, 2017
https://doi.org/10.5194/bg-14-5217-2017

Research article 21 Nov 2017

Research article | 21 Nov 2017

Carbon uptake and biogeochemical change in the Southern Ocean, south of Tasmania

Paula Conde Pardo et al.

Viewed

Total article views: 2,004 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,216 737 51 2,004 175 51 83
  • HTML: 1,216
  • PDF: 737
  • XML: 51
  • Total: 2,004
  • Supplement: 175
  • BibTeX: 51
  • EndNote: 83
Views and downloads (calculated since 07 Jun 2017)
Cumulative views and downloads (calculated since 07 Jun 2017)

Viewed (geographical distribution)

Total article views: 1,895 (including HTML, PDF, and XML) Thereof 1,888 with geography defined and 7 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 27 Jan 2022
Download
Short summary
The carbon content of the water masses of the Southern Ocean south of Tasmania has increased over the period 1995–2011, leading to a general decrease in pH. An enhancement in the upwelling of DIC-rich deep waters is the main plausible cause of the increase in carbon in surface waters south of the Polar Front. North of the Polar Front, strong winds favor the ventilation of surface to intermediate layers, where the DIC increase is explained by the uptake of atmospheric CO2.
Altmetrics
Final-revised paper
Preprint