Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Volume 14, issue 4
Biogeosciences, 14, 861–883, 2017
https://doi.org/10.5194/bg-14-861-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 14, 861–883, 2017
https://doi.org/10.5194/bg-14-861-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Feb 2017

Research article | 24 Feb 2017

Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere

Paul J. Hanson et al.

Data sets

SPRUCE Whole Ecosystems Warming (WEW) Environmental Data Beginning August 2015 P. J. Hanson, J. S. Riggs, W. R. Nettles, M. B. Krassovski, and L. A. Hook http://dx.doi.org/10.3334/CDIAC/spruce.032

Publications Copernicus
Download
Short summary
This paper describes operational methods to achieve whole-ecosystem warming (WEW) for tall-stature, high-carbon, boreal forest peatlands. The methods enable scientists to study immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles). The WEW technology allows researchers to have a plausible glimpse of future environmental conditions for study that are not available in the current observational record.
This paper describes operational methods to achieve whole-ecosystem warming (WEW) for...
Citation
Altmetrics
Final-revised paper
Preprint