Articles | Volume 15, issue 5
https://doi.org/10.5194/bg-15-1535-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-1535-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”
Jan-Peter Duda
CORRESPONDING AUTHOR
Department of Geobiology, Geoscience Centre, Georg-August-Universität
Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
“Origin of Life” Group, Göttingen Academy of Sciences and
Humanities, Theaterstraße 7, 37073 Göttingen, Germany
Volker Thiel
Department of Geobiology, Geoscience Centre, Georg-August-Universität
Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
Thorsten Bauersachs
Department of Organic Geochemistry, Institute of Geosciences,
Christian-Albrechts-Universität Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel,
Germany
Helge Mißbach
Department of Geobiology, Geoscience Centre, Georg-August-Universität
Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
Department Planets and Comets, Max Planck Institute for Solar System
Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
Manuel Reinhardt
Department of Geobiology, Geoscience Centre, Georg-August-Universität
Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
Department Planets and Comets, Max Planck Institute for Solar System
Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
Nadine Schäfer
Department of Geobiology, Geoscience Centre, Georg-August-Universität
Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
“Origin of Life” Group, Göttingen Academy of Sciences and
Humanities, Theaterstraße 7, 37073 Göttingen, Germany
Martin J. Van Kranendonk
Australian Centre for Astrobiology, University of New South Wales,
Kensington, New South Wales 2052, Australia
School of Biological, Earth and Environmental Sciences, University of
New South Wales, Kensington, New South Wales 2052, Australia
Australian Research Council Centre of Excellence for Core to Crust
Fluid Systems, School of Biological, Earth and Environmental Sciences,
University of New South Wales, Kensington, New South Wales 2052, Australia
Joachim Reitner
Department of Geobiology, Geoscience Centre, Georg-August-Universität
Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
“Origin of Life” Group, Göttingen Academy of Sciences and
Humanities, Theaterstraße 7, 37073 Göttingen, Germany
Viewed
Total article views: 6,785 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Dec 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
5,040 | 1,415 | 330 | 6,785 | 681 | 127 | 127 |
- HTML: 5,040
- PDF: 1,415
- XML: 330
- Total: 6,785
- Supplement: 681
- BibTeX: 127
- EndNote: 127
Total article views: 5,972 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 15 Mar 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
4,616 | 1,045 | 311 | 5,972 | 503 | 125 | 114 |
- HTML: 4,616
- PDF: 1,045
- XML: 311
- Total: 5,972
- Supplement: 503
- BibTeX: 125
- EndNote: 114
Total article views: 813 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Dec 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
424 | 370 | 19 | 813 | 178 | 2 | 13 |
- HTML: 424
- PDF: 370
- XML: 19
- Total: 813
- Supplement: 178
- BibTeX: 2
- EndNote: 13
Viewed (geographical distribution)
Total article views: 6,785 (including HTML, PDF, and XML)
Thereof 6,260 with geography defined
and 525 with unknown origin.
Total article views: 5,972 (including HTML, PDF, and XML)
Thereof 5,474 with geography defined
and 498 with unknown origin.
Total article views: 813 (including HTML, PDF, and XML)
Thereof 786 with geography defined
and 27 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
39 citations as recorded by crossref.
- Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions H. Mißbach et al. 10.1038/s41467-021-21323-z
- Hydrothermal circulation and oil migration at the root of the heterogeneous micro-structure of carbonaceous material in the 2.0 Ga Zaonega Formation, Onega Basin, Russia Y. Qu et al. 10.1016/j.precamres.2020.105705
- Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth’s earliest ecosystems K. Hickman-Lewis et al. 10.1038/s41598-020-61774-w
- Reply to comment on: Carbonaceous matter in ∼3.5 Ga black bedded barite from the Dresser Formation (Pilbara Craton, Western Australia) – Insights into organic cycling on the juvenile earth L. Weimann et al. 10.1016/j.precamres.2024.107494
- Formation of micro‐spherulitic barite in association with organic matter within sulfidized stromatolites of the 3.48 billion‐year‐old Dresser Formation, Pilbara Craton R. Baumgartner et al. 10.1111/gbi.12392
- Carbonaceous matter in ∼ 3.5 Ga black bedded barite from the Dresser Formation (Pilbara Craton, Western Australia) – Insights into organic cycling on the juvenile Earth L. Weimann et al. 10.1016/j.precamres.2024.107321
- Elements for the Origin of Life on Land: A Deep-Time Perspective from the Pilbara Craton of Western Australia M. Van Kranendonk et al. 10.1089/ast.2019.2107
- Hydrothermal sulfidation of biogenic magnetite produces framboid-like pyrite E. Runge et al. 10.1038/s43247-024-01400-z
- Organic geochemical approaches to understanding early life J. Alleon & R. Summons 10.1016/j.freeradbiomed.2019.03.005
- Preservation and Distributions of Covalently Bound Polyaromatic Hydrocarbons in Ancient Biogenic Kerogens and Insoluble Organic Macromolecules K. Pehr et al. 10.1089/ast.2020.2338
- Organic signatures in Pleistocene cherts from Lake Magadi (Kenya) – implications for early Earth hydrothermal deposits M. Reinhardt et al. 10.5194/bg-16-2443-2019
- Investigating the Effect of Perchlorate on Flight-like Gas Chromatography–Mass Spectrometry as Performed by MOMA on board the ExoMars 2020 Rover H. Mißbach et al. 10.1089/ast.2018.1997
- Contrasting Modes of Carbonate Precipitation in a Hypersaline Microbial Mat and Their Influence on Biomarker Preservation (Kiritimati, Central Pacific) Y. Shen et al. 10.3390/min12020267
- Organic carbon generation in 3.5-billion-year-old basalt-hosted seafloor hydrothermal vent systems B. Rasmussen & J. Muhling 10.1126/sciadv.add7925
- Trace elements (REE + Y) reveal marine, subaerial, and hydrothermal controls on an early Archean habitat for life: The 3.48 Ga volcanic-caldera system of the dresser formation, Pilbara Craton T. Djokic et al. 10.1016/j.chemgeo.2023.121865
- In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return K. Hickman-Lewis et al. 10.1089/ast.2022.0018
- Structural analysis of syn-depositional hydrothermal veins of the 3.48 Ga Dresser Formation, Pilbara Craton, Australia S. Tadbiri & M. Van Kranendonk 10.1016/j.precamres.2020.105844
- Comment on: Carbonaceous matter in ∼ 3.5 Ga black bedded barite from the Dresser Formation (Pilbara Craton, Western Australia) – Insights into organic cycling on the juvenile Earth R. Baumgartner & S. Caruso 10.1016/j.precamres.2024.107446
- Quantifying Preservation Potential: Lipid Degradation in a Mars-Analog Circumneutral Iron Deposit J. Tan & M. Sephton 10.1089/ast.2020.2344
- Organo-mineral associations in chert of the 3.5 Ga Mount Ada Basalt raise questions about the origin of organic matter in Paleoarchean hydrothermally influenced sediments J. Alleon et al. 10.1038/s41598-019-53272-5
- New preparation techniques for molecular and in‐situ analysis of ancient organic micro‐ and nanostructures A. Fadel et al. 10.1111/gbi.12380
- Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon K. Lepot 10.1016/j.earscirev.2020.103296
- Organic Records of Early Life on Mars: The Role of Iron, Burial, and Kinetics on Preservation J. Tan & M. Sephton 10.1089/ast.2019.2046
- Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars S. Royle et al. 10.1089/ast.2020.2226
- FTIR microspectroscopy of carbonaceous matter in ~ 3.5 Ga seafloor hydrothermal deposits in the North Pole area, Western Australia M. Igisu et al. 10.1186/s40645-018-0242-1
- Correlating trace element compositions, petrology, and Raman spectroscopy data in the ∼3.46 Ga Apex chert, Pilbara Craton, Australia J. Rouillard et al. 10.1016/j.precamres.2021.106415
- An Alternative Approach for Assessing Biogenicity J. Rouillard et al. 10.1089/ast.2020.2282
- Exceptional preservation of organic matter and iron-organic colloidal mineralization in hydrothermal black smoker-type sulfide mineralization from the Paleoarchean seafloor R. Baumgartner et al. 10.1016/j.chemgeo.2022.121296
- Habitability of the early Earth: liquid water under a faint young Sun facilitated by strong tidal heating due to a closer Moon R. Heller et al. 10.1007/s12542-021-00582-7
- Microbial biosignatures in ancient deep‐sea hydrothermal sulfides E. Runge et al. 10.1111/gbi.12539
- Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions S. Royle et al. 10.1089/ast.2020.2428
- Mechanisms of nitrogen isotope fractionation at an ancient black smoker in the 2.7 Ga Abitibi greenstone belt, Canada A. Martin et al. 10.1130/G51689.1
- False biosignatures on Mars: anticipating ambiguity S. McMahon & J. Cosmidis 10.1144/jgs2021-050
- Microbial processes during deposition and diagenesis of Banded Iron Formations C. Dreher et al. 10.1007/s12542-021-00598-z
- Aspects of the biological carbon cycle in a ca. 3.42-billion-year-old marine ecosystem M. Reinhardt et al. 10.1016/j.precamres.2024.107289
- Pyritic stromatolites from the Paleoarchean Dresser Formation, Pilbara Craton: Resolving biogenicity and hydrothermally influenced ecosystem dynamics R. Baumgartner et al. 10.1111/gbi.12610
- Triple oxygen isotopes of cherts through time S. Sengupta et al. 10.1016/j.chemgeo.2020.119789
- The mobilization of boron and lithium in the hydrothermal system of the ∼3.48 Ga Dresser caldera: A stable isotope perspective S. Caruso et al. 10.1016/j.chemgeo.2022.121232
- Sulfidization of 3.48 billion-year-old stromatolites of the Dresser Formation, Pilbara Craton: Constraints from in-situ sulfur isotope analysis of pyrite R. Baumgartner et al. 10.1016/j.chemgeo.2020.119488
39 citations as recorded by crossref.
- Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions H. Mißbach et al. 10.1038/s41467-021-21323-z
- Hydrothermal circulation and oil migration at the root of the heterogeneous micro-structure of carbonaceous material in the 2.0 Ga Zaonega Formation, Onega Basin, Russia Y. Qu et al. 10.1016/j.precamres.2020.105705
- Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth’s earliest ecosystems K. Hickman-Lewis et al. 10.1038/s41598-020-61774-w
- Reply to comment on: Carbonaceous matter in ∼3.5 Ga black bedded barite from the Dresser Formation (Pilbara Craton, Western Australia) – Insights into organic cycling on the juvenile earth L. Weimann et al. 10.1016/j.precamres.2024.107494
- Formation of micro‐spherulitic barite in association with organic matter within sulfidized stromatolites of the 3.48 billion‐year‐old Dresser Formation, Pilbara Craton R. Baumgartner et al. 10.1111/gbi.12392
- Carbonaceous matter in ∼ 3.5 Ga black bedded barite from the Dresser Formation (Pilbara Craton, Western Australia) – Insights into organic cycling on the juvenile Earth L. Weimann et al. 10.1016/j.precamres.2024.107321
- Elements for the Origin of Life on Land: A Deep-Time Perspective from the Pilbara Craton of Western Australia M. Van Kranendonk et al. 10.1089/ast.2019.2107
- Hydrothermal sulfidation of biogenic magnetite produces framboid-like pyrite E. Runge et al. 10.1038/s43247-024-01400-z
- Organic geochemical approaches to understanding early life J. Alleon & R. Summons 10.1016/j.freeradbiomed.2019.03.005
- Preservation and Distributions of Covalently Bound Polyaromatic Hydrocarbons in Ancient Biogenic Kerogens and Insoluble Organic Macromolecules K. Pehr et al. 10.1089/ast.2020.2338
- Organic signatures in Pleistocene cherts from Lake Magadi (Kenya) – implications for early Earth hydrothermal deposits M. Reinhardt et al. 10.5194/bg-16-2443-2019
- Investigating the Effect of Perchlorate on Flight-like Gas Chromatography–Mass Spectrometry as Performed by MOMA on board the ExoMars 2020 Rover H. Mißbach et al. 10.1089/ast.2018.1997
- Contrasting Modes of Carbonate Precipitation in a Hypersaline Microbial Mat and Their Influence on Biomarker Preservation (Kiritimati, Central Pacific) Y. Shen et al. 10.3390/min12020267
- Organic carbon generation in 3.5-billion-year-old basalt-hosted seafloor hydrothermal vent systems B. Rasmussen & J. Muhling 10.1126/sciadv.add7925
- Trace elements (REE + Y) reveal marine, subaerial, and hydrothermal controls on an early Archean habitat for life: The 3.48 Ga volcanic-caldera system of the dresser formation, Pilbara Craton T. Djokic et al. 10.1016/j.chemgeo.2023.121865
- In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return K. Hickman-Lewis et al. 10.1089/ast.2022.0018
- Structural analysis of syn-depositional hydrothermal veins of the 3.48 Ga Dresser Formation, Pilbara Craton, Australia S. Tadbiri & M. Van Kranendonk 10.1016/j.precamres.2020.105844
- Comment on: Carbonaceous matter in ∼ 3.5 Ga black bedded barite from the Dresser Formation (Pilbara Craton, Western Australia) – Insights into organic cycling on the juvenile Earth R. Baumgartner & S. Caruso 10.1016/j.precamres.2024.107446
- Quantifying Preservation Potential: Lipid Degradation in a Mars-Analog Circumneutral Iron Deposit J. Tan & M. Sephton 10.1089/ast.2020.2344
- Organo-mineral associations in chert of the 3.5 Ga Mount Ada Basalt raise questions about the origin of organic matter in Paleoarchean hydrothermally influenced sediments J. Alleon et al. 10.1038/s41598-019-53272-5
- New preparation techniques for molecular and in‐situ analysis of ancient organic micro‐ and nanostructures A. Fadel et al. 10.1111/gbi.12380
- Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon K. Lepot 10.1016/j.earscirev.2020.103296
- Organic Records of Early Life on Mars: The Role of Iron, Burial, and Kinetics on Preservation J. Tan & M. Sephton 10.1089/ast.2019.2046
- Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars S. Royle et al. 10.1089/ast.2020.2226
- FTIR microspectroscopy of carbonaceous matter in ~ 3.5 Ga seafloor hydrothermal deposits in the North Pole area, Western Australia M. Igisu et al. 10.1186/s40645-018-0242-1
- Correlating trace element compositions, petrology, and Raman spectroscopy data in the ∼3.46 Ga Apex chert, Pilbara Craton, Australia J. Rouillard et al. 10.1016/j.precamres.2021.106415
- An Alternative Approach for Assessing Biogenicity J. Rouillard et al. 10.1089/ast.2020.2282
- Exceptional preservation of organic matter and iron-organic colloidal mineralization in hydrothermal black smoker-type sulfide mineralization from the Paleoarchean seafloor R. Baumgartner et al. 10.1016/j.chemgeo.2022.121296
- Habitability of the early Earth: liquid water under a faint young Sun facilitated by strong tidal heating due to a closer Moon R. Heller et al. 10.1007/s12542-021-00582-7
- Microbial biosignatures in ancient deep‐sea hydrothermal sulfides E. Runge et al. 10.1111/gbi.12539
- Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions S. Royle et al. 10.1089/ast.2020.2428
- Mechanisms of nitrogen isotope fractionation at an ancient black smoker in the 2.7 Ga Abitibi greenstone belt, Canada A. Martin et al. 10.1130/G51689.1
- False biosignatures on Mars: anticipating ambiguity S. McMahon & J. Cosmidis 10.1144/jgs2021-050
- Microbial processes during deposition and diagenesis of Banded Iron Formations C. Dreher et al. 10.1007/s12542-021-00598-z
- Aspects of the biological carbon cycle in a ca. 3.42-billion-year-old marine ecosystem M. Reinhardt et al. 10.1016/j.precamres.2024.107289
- Pyritic stromatolites from the Paleoarchean Dresser Formation, Pilbara Craton: Resolving biogenicity and hydrothermally influenced ecosystem dynamics R. Baumgartner et al. 10.1111/gbi.12610
- Triple oxygen isotopes of cherts through time S. Sengupta et al. 10.1016/j.chemgeo.2020.119789
- The mobilization of boron and lithium in the hydrothermal system of the ∼3.48 Ga Dresser caldera: A stable isotope perspective S. Caruso et al. 10.1016/j.chemgeo.2022.121232
- Sulfidization of 3.48 billion-year-old stromatolites of the Dresser Formation, Pilbara Craton: Constraints from in-situ sulfur isotope analysis of pyrite R. Baumgartner et al. 10.1016/j.chemgeo.2020.119488
Discussed (final revised paper)
Latest update: 14 Sep 2024
Short summary
The origin of organic matter in the oldest rocks on Earth is commonly ambiguous (biotic vs. abiotic). This problem culminates in the case of hydrothermal chert veins that contain abundant organic matter. Here we demonstrate a microbial origin of kerogen embedded in a 3.5 Gyr old hydrothermal chert vein. We explain this finding with the large-scale redistribution of biomass by hydrothermal fluids, emphasizing the interplay between biological and abiological processes on the early Earth.
The origin of organic matter in the oldest rocks on Earth is commonly ambiguous (biotic vs....
Altmetrics
Final-revised paper
Preprint