Articles | Volume 15, issue 7
Biogeosciences, 15, 1933–1946, 2018
Biogeosciences, 15, 1933–1946, 2018

Research article 03 Apr 2018

Research article | 03 Apr 2018

Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

Xiao Han1,*, Cong Xu1,*, Jennifer A. J. Dungait2, Roland Bol3, Xiaojie Wang1, Wenliang Wu1, and Fanqiao Meng1 Xiao Han et al.
  • 1Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
  • 2Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
  • 3Institute of Bio- and Geosciences, Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
  • *These authors contributed equally to this work.

Abstract. Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0–20 cm depth) at the rate of 0.35 (95 % CI, 0.31–0.40) Mg C ha−1 yr−1, increased crop grain yield by 13.4 % (9.3–18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha−1 yr−1 with mineral fertilizer of 200–400 kg N ha−1 yr−1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9–56.4 %) and SOC sequestrated by the rate of 0.85 (0.54–1.15) Mg C ha−1 yr−1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28–62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11–15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture intensifies both in China and other regions with different climate conditions.

Short summary
Straw incorporation increases soil organic carbon (SOC) stocks and crop yields in experimental trials across China, regardless of the climate or land use. This conclusion is based on a wide range of soils and climate conditions and suggests that farmers across the world may use this simple management tool to increase their outputs by improving the quality of their outputs by improving the quality of their soil, while mitigating climate change.
Final-revised paper