Articles | Volume 15, issue 9
https://doi.org/10.5194/bg-15-2629-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-2629-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge
Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France
Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
Jozée Sarrazin
Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France
Julien Marticorena
Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France
Gauthier Schaal
Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France
Thomas Day
Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France
Pierre Legendre
Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
Stéphane Hourdez
Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
Marjolaine Matabos
Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France
Related authors
No articles found.
Pedro J. Soto Vega, Gustavo X. Andrade-Miranda, Gilson A. O. P. da Costa, Panagiotis Papadakis, Marjolaine Matabos, Thibault Napoleon, Ayoub Karine, and Henrique Fagundes Gasparoto
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 387–395, https://doi.org/10.5194/isprs-annals-X-3-2024-387-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-387-2024, 2024
Vincent Mouchi, Christophe Pecheyran, Fanny Claverie, Cécile Cathalot, Marjolaine Matabos, Yoan Germain, Olivier Rouxel, Didier Jollivet, Thomas Broquet, and Thierry Comtet
Biogeosciences, 21, 145–160, https://doi.org/10.5194/bg-21-145-2024, https://doi.org/10.5194/bg-21-145-2024, 2024
Short summary
Short summary
The impact of deep-sea mining will depend critically on the ability of larval dispersal of hydrothermal mollusks to connect and replenish natural populations. However, assessing connectivity is extremely challenging, especially in the deep sea. Here, we investigate the potential of using the chemical composition of larval shells to discriminate larval origins between multiple hydrothermal sites in the southwest Pacific. Our results confirm that this method can be applied with high accuracy.
Daphne Cuvelier, Pierre Legendre, Agathe Laës-Huon, Pierre-Marie Sarradin, and Jozée Sarrazin
Biogeosciences, 14, 2955–2977, https://doi.org/10.5194/bg-14-2955-2017, https://doi.org/10.5194/bg-14-2955-2017, 2017
M. Portail, K. Olu, E. Escobar-Briones, J. C. Caprais, L. Menot, M. Waeles, P. Cruaud, P. M. Sarradin, A. Godfroy, and J. Sarrazin
Biogeosciences, 12, 5455–5479, https://doi.org/10.5194/bg-12-5455-2015, https://doi.org/10.5194/bg-12-5455-2015, 2015
Short summary
Short summary
The absence of biogeographic barrier between seep and vent ecosystems in the Guaymas Basin offers the opportunity to assess the role of environmental conditions in the distribution of macrofaunal communities. Our results showed that community structure was primarily shaped by common abiotic factors. In addition, a high number of common species were shared, suggesting frequent connections between the two ecosystems. Overall, this study supports the hypothesis of a continuum among vents and seeps.
Related subject area
Astrobiology and Exobiology: Extreme Environments, Brines & Hydrothermal
Microbial response to deliquescence of nitrate-rich soils in the hyperarid Atacama Desert
Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring
Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia)
Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community
Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments
Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge
Novel water source for endolithic life in the hyperarid core of the Atacama Desert
Experimental fossilisation of viruses from extremophilic Archaea
Felix Leo Arens, Alessandro Airo, Christof Sager, Hans-Peter Grossart, Kai Mangelsdorf, Rainer U. Meckenstock, Mark Pannekens, Philippe Schmitt-Kopplin, Jenny Uhl, Bernardita Valenzuela, Pedro Zamorano, Luca Zoccarato, and Dirk Schulze-Makuch
EGUsphere, https://doi.org/10.5194/egusphere-2024-1859, https://doi.org/10.5194/egusphere-2024-1859, 2024
Short summary
Short summary
We studied unique nitrate-rich soils in the hyperarid Atacama Desert that form brines at night under high relative humidity. Despite providing water for microorganisms, these soils exhibit extremely low microbial activity, indicating that the high nitrate levels inhibit microbial life. On the other hand, enriched organic matter indicates their potential preservation. This research helps to understand the limits of life in extreme environments and aids in the search for signs of life on Mars.
Shun Chen, Xiaotong Peng, Hengchao Xu, and Kaiwen Ta
Biogeosciences, 13, 2051–2060, https://doi.org/10.5194/bg-13-2051-2016, https://doi.org/10.5194/bg-13-2051-2016, 2016
Short summary
Short summary
The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, in combination of culture-independent and culture-dependent approaches, we provide direct evidences that ammonia-oxidizing Archaea (AOA) are indeed responsible for the major portion of ammonia oxidation in high-temperature hot springs.
C. Monnin, V. Chavagnac, C. Boulart, B. Ménez, M. Gérard, E. Gérard, C. Pisapia, M. Quéméneur, G. Erauso, A. Postec, L. Guentas-Dombrowski, C. Payri, and B. Pelletier
Biogeosciences, 11, 5687–5706, https://doi.org/10.5194/bg-11-5687-2014, https://doi.org/10.5194/bg-11-5687-2014, 2014
L. A. Ziolkowski, N. C. S. Mykytczuk, C. R. Omelon, H. Johnson, L. G. Whyte, and G. F. Slater
Biogeosciences, 10, 7661–7675, https://doi.org/10.5194/bg-10-7661-2013, https://doi.org/10.5194/bg-10-7661-2013, 2013
D. de Beer, M. Haeckel, J. Neumann, G. Wegener, F. Inagaki, and A. Boetius
Biogeosciences, 10, 5639–5649, https://doi.org/10.5194/bg-10-5639-2013, https://doi.org/10.5194/bg-10-5639-2013, 2013
A. Bourbonnais, S. K. Juniper, D. A. Butterfield, A. H. Devol, M. M. M. Kuypers, G. Lavik, S. J. Hallam, C. B. Wenk, B. X. Chang, S. A. Murdock, and M. F. Lehmann
Biogeosciences, 9, 4661–4678, https://doi.org/10.5194/bg-9-4661-2012, https://doi.org/10.5194/bg-9-4661-2012, 2012
J. Wierzchos, A. F. Davila, I. M. Sánchez-Almazo, M. Hajnos, R. Swieboda, and C. Ascaso
Biogeosciences, 9, 2275–2286, https://doi.org/10.5194/bg-9-2275-2012, https://doi.org/10.5194/bg-9-2275-2012, 2012
F. Orange, A. Chabin, A. Gorlas, S. Lucas-Staat, C. Geslin, M. Le Romancer, D. Prangishvili, P. Forterre, and F. Westall
Biogeosciences, 8, 1465–1475, https://doi.org/10.5194/bg-8-1465-2011, https://doi.org/10.5194/bg-8-1465-2011, 2011
Cited articles
Bachraty, C., Legendre, P., and Desbruyères, D.: Biogeographic
relationships among deep-sea hydrothermal vent faunas at global scale,
Deep-Sea
Res. Pt. I, 56, 1371–1378, 2009.
Barnard, J. L. and Ingram, C. L.: Lysianassoid Amphipoda (Crustacea) from
deep-sea thermal vents, Smithson, Contrib. to Zool., 4, 1–80, 1990.
Bates, A. E.: Feeding strategy, morphological specialisation and presence of
bacterial episymbionts in lepetodrilid gastropods from hydrothermal vents,
Mar. Ecol.-Prog. Ser., 347, 87–99, 2007.
Bates, A., Tunnicliffe, V., and Lee, R. W.: Role of thermal conditions in
habitat selection by hydrothermal vent gastropods, Mar. Ecol.-Prog. Ser.,
305, 1–15, 2005.
Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A., and Macleod, H.:
Determining trophic niche width: a novel approach using stable isotope
analysis, J. Anim. Ecol., 73, 1007–1012, 2004.
Bergquist, D., Ward, T., Cordes, E., McNelis, T., Howlett, S., Kosoff, R.,
Hourdez, S., Carney, R., and Fisher, C.: Community structure of
vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps, J.
Exp. Mar. Bio. Ecol., 289, 197–222, 2003.
Bergquist, D. C., Eckner, J. T., Urcuyo, I. A., Cordes, E. E., Hourdez, S.,
Macko, S. A., and Fisher, C. R.: Using stable isotopes and quantitative
community characteristics to determine a local hydrothermal vent food web,
Mar. Ecol.-Prog. Ser., 330, 49–65, 2007.
Blake, J. A. and Hilbig, B.: Polychaeta from the vicinity of deep-sea
hydrothermal vents in the eastern Pacific. II. New species and records from
the Juan de Fuca and Explorer Ridge, Pacific Sci., 44, 219–253, 1990.
Blake, J. A.: Family Pholoidae Kinberg, 1858, in Taxonomic atlas of the
benthic fauna of the Santa Maria Basin and Western Santa Barbara Channel 5 –
The Annelida Part 2, Polychaeta: Phyllodocida (Syllidae and scale-bearing
families), Amphinomida, and Eunicida. Santa Barbara Museum of Natural
History. Santa Barbara, 175–188, 1995.
Bonifácio, P., Lelièvre, Y., and Omnes, E.: New species and
phylogenetic insights in Hesiospina (Annelida, Hesionidae), Zootaxa,
submitted, 2018.
Bourbonnais, A., Lehmann, M. F., Butterfield, D. A., and Juniper, S. K.:
Subseafloor nitrogen transformations in diffuse hydrothermal vent fluids of
the Juan de Fuca Ridge evidenced by the isotopic composition of nitrate and
ammonium, Geochem. Geophy. Geosy., 13, 1–23, 2012.
Child, A. C.: Ammothea verenae and Sericosura venticola, two new hydrothermal vent-associated pycnogonids from
the northeast Pacific, Proc. Biol. Soc. Washingt., 100, 892–901, 1987.
Child, A. C.: Sericosura dissita, n. sp., a third hydrothermal vent Pycnogonida described from
the northeast Pacific, and other known vent species, Species Divers. an Int.
J. Taxon. Syst. speciation, Biogeogr. life Hist. Res. Anim., 5, 1–6,
2000.
Childress, J. J. and Fisher, C. R.: The biology of hydrothermal vent
animals: physiology, biochemistry, and autotrophic symbioses, Oceanogr. Mar.
Biol. Annu. Rev., 30, 337–441, 1992.
Conway, N. M., Kennicutt, M. C., and Van Dover, C. L.: Stable isotopes in the
study of marine chemosynthetic-based ecosystems, in: Stable isotopes in
ecology and environmental science, Blackwell Scientific, Oxford, 158–186,
1994.
Cuvelier, D., Sarradin, P.-M., Sarrazin, J., Colaço, A., Copley, J. T.,
Desbruyères, D., Glover, A. G., Serrao Santos, R., and Tyler, P. A.:
Hydrothermal faunal assemblages and habitat characterisation at the Eiffel
Tower edifice (Lucky Strike, Mid-Atlantic Ridge), Mar. Ecol., 32,
243–255, 2011.
Cuvelier, D., De Busserolles, F., Lavaud, R., Floc'h, E., Fabri, M.-C.,
Sarradin, P. M., and Sarrazin, J.: Biological data extraction from imagery –
How far can we go? A case study from the Mid-Atlantic Ridge, Mar. Environ.
Res., 82, 15–27, 2012.
Cuvelier, D., Legendre, P., Laes, A., Sarradin, P.-M., and Sarrazin, J.:
Rhythms and community dynamics of a hydrothermal tubeworm assemblage at Main
Endeavour Field – A multidisciplinary deep-sea observatory approach, PLoS
One, 9, e96924, https://doi.org/10.1371/journal.pone.0096924, 2014.
De Busserolles, F., Sarrazin, J., Gauthier, O., Gélinas, Y., Fabri,
M.-C., Sarradin, P.-M., and Desbruyères, D.: Are spatial variations in
the diets of hydrothermal fauna linked to local environmental conditions?,
Deep-Sea Res. Pt. II, 56, 1649–1664, 2009.
Delaney, J. R., Robigou, V., McDuff, R. E., and Tivey, M. K.: Geology of a
vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge,
J. Geophys. Res., 97, 19663–19682, 1992.
Desbruyères, D. and Laubier, L.: Les Alvinellidae, une famille nouvelle
d'annélides polychètes inféodées aux sources hydrothermales
sous-marines: systématique, biologie et écologie, Can. J. Zool.,
64, 2227–2245, 1986.
Desbruyères, D. and Laubier, L.: Systematics, phylogeny, ecology and
distribution of the Alvinellidae (Polychaeta) from deep-sea hydrothermal
vents, Ophelia, 5, 31–45, 1991.
Detinova, N. N.: New species of polychaetous annelids from hydrothermal
vents of the Juan-de-Fuca Ridge (Pacific Ocean), Zool. Zhurnal, 67,
858–864, 1988.
Devey, C. W., Fisher, C. R., and Scott, S.: Responsible science at
hydrothermal vents, Oceanography, 20, 162–171, 2007.
Dreyer, J. C., Knick, K. E., Flickinger, W. B., and Van Dover, C. L.:
Development of macrofaunal community structure in mussel beds on the
northern East Pacific Rise, Mar. Ecol.-Prog. Ser., 302, 121–134, 2005.
Erickson, K. L., Macko, S. A., and Van Dover, C. L.: Evidence for a
chemoautotrophically based food web at inactive hydrothermal vents (Manus
Basin), Deep-Sea Res. Pt. II, 56, 1577–1585,
2009.
Fisher, C., Takai, K., and Le Bris, N.: Hydrothermal vent ecosystems,
Oceanography, 20, 14–23, 2007.
Fox, M., Juniper, S. K., and Vali, H.: Chemoautotrophy as a possible
nutritional source in the hydrothermal vent limpet Lepetodrilus fucensis, Cah. Biol. Mar., 43,
371–376, 2002.
Fretter, V.: New archaeogastropod limpets from hydrothermal vents?;
supermfamily Lepetodrilacea, Philos. T. R. Soc. London, 318, 33–82,
1988.
Galkin, S. V. and Goroslavskaya, E. I.: Bottom fauna associated with
Bathymodiolus azoricus (Mytilidae) mussel beds in the hydrothermal fields of the Mid-Atlantic
Ridge, Oceanology, 50, 51–60, 2010.
Gaudron, S. M., Lefebvre, S., Nunes Jorge, A., Gaill, F., and Pradillon, F.:
Spatial and temporal variations in food web structure from newly-opened
habitat at hydrothermal vents, Mar. Environ. Res., 77, 129–140, 2012.
Gollner, S., Zekely, J., Van Dover, C. L., Govenar, B., Le Bris, N.,
Nemeschkal, H. L., Bright, M., Hole, W., and Hole, W.: Benthic copepod
communities associated with tubeworm and mussel aggregations on the East
Pacific Rise, Cah. Biol. Mar., 47, 397–402, 2006.
Govenar, B. and Fisher, C. R.: Experimental evidence of habitat provision by
aggregations of Riftia pachyptila at hydrothermal vents on the East Pacific Rise, Mar. Ecol.,
28, 3–14, 2007.
Govenar, B., Le Bris, N., Gollner, S., Glanville, J., Aperghis, A. B.,
Hourdez, S., and Fisher, C. R.: Epifaunal community structure associated with
Riftia pachyptila aggregations in chemically different hydrothermal vent habitats, Mar. Ecol.-Prog. Ser., 305, 67–77, 2005.
Govenar, B., Fisher, C. R., and Shank, T. M.: Variation in the diets of
hydrothermal vent gastropods, Deep-Sea Res. Pt. II, 121,
193–201, 2015.
Govenar, B. W., Bergquist, D. C., Urcuyo, I. A., Eckner, J. T., and Fisher,
C. R.: Three Ridgeia piscesae assemblages from a single Juan de Fuca Ridge sulphide edifice:
Structurally different and functionally similar, Cah. Biol. Mar., 43,
247–252, 2002.
Gray, J. S.: The measurement of marine species diversity, with an
application to the benthic fauna of the Norwegian continental shelf, J.
Exp. Mar. Bio. Ecol., 250, 23–49, 2000.
Grelon, D., Morineaux, M., Desrosiers, G., and Juniper, K.: Feeding and
territorial behavior of Paralvinella sulfincola, a polychaete worm at deep-sea hydrothermal vents
of the Northeast Pacific Ocean, J. Exp. Mar. Bio. Ecol., 329, 174–186,
2006.
Harasewych, M. G. and Kantor, Y. I.: Buccinum thermophilum (Gastropoda: Neogastropoda:
Buccinidae), a new species from the Endeavour vent field of the Juan de Fuca
Ridge, J. Molluscan Stud., 68, 39–44, 2002.
Hügler, M. and Sievert, S. M.: Beyond the Calvin cycle: autotrophic
carbon fixation in the ocean, Ann. Rev. Mar. Sci., 3, 261–289, 2011.
Jones, C. G., Lawton, J. H., and Shachak, M.: Organisms as ecosystem
engineers, in: Ecosystem management, Springer, New York, 69,
130–147, 1994.
Jones, C. G., Lawton, J. H., and Shachak, M.: Positive and negative effects
of organisms as physical ecosystem engineers, Ecology, 78, 1946–1957, 1997.
Jones, M. L.: On the Vestimentifera, new phylum: six new species, and other
taxa, from hydrothermal vents and elsewhere, Bull. Biol. Soc. Washingt., 6,
117–158, 1985.
Jumars, P. A., Dorgan, K. M., and Lindsay, S. M.: Diet of worms emended: an
update of polychaete feeding guilds, Ann. Rev. Mar. Sci., 7, 497–520, 2015.
Kelley, D. S., Carbotte, S. M., Caress, D. W., Clague, D. A., Delaney, J.
R., Gill, J. B., Hadaway, H., Holden, J. F., Hooft, E. E. E., Kellogg, J.
P., Lilley, M. D., Stoermer, M., Toomey, D., Weekly, R., and Wilcock, W. S.
D.: Endeavour Segment of the Juan de Fuca Ridge: one of the most remarkable
places on earth, Oceanography, 25, 44–61, 2012.
Kelly, N. E. and Metaxas, A.: Influence of habitat on the reproductive
biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca)
from the Northeast Pacific, Mar. Biol., 151, 649–662, 2007.
Kornicker, L. S.: Myodocopid ostracoda of hydrothermal vents in the eastern
Pacific Ocean, Smithson. Contrib. Zool., 516, 1–46, 1991.
Krantz, G. W.: A new species of Copidognathus Trouessart (Acari: Actinedida:
Halacaridae) from the Galapagos Rift, Can. J. Zool., 60, 1728–1731,
1982.
Lee, R. W. and Childress, J. J.: Inorganic N assimilation and ammonium pools
in a deep-sea mussel containing methanotrophic endosymbionts, Biol. Bull.,
190, 373–384, 1996.
Lelièvre, Y., Legendre, P., Matabos, M., Mihály, S., Lee, R. W.,
Sarradin, P.-M., Arango, C. P., and Sarrazin, J.: Astronomical and
atmospheric impacts on deep-sea hydrothermal vent invertebrates, Proc. R.
Soc. B Biol. Sci., 284, 20162123, https://doi.org/10.1098/rspb.2016.2123, 2017.
Lelièvre, Y., Sarrazin, J., Marticorena, J., Schaal, G., Day, T.,
Legendre, P., Hourdez, S., and Matabos, M.: Grotto hydrothermal edifice:
abundance and isotopic data from Ocean Networks Canada's Expedition 2015 and
2016, Wiring the Abyss, SEANOE, https://doi.org/10.17882/55008, 2018.
Lenihan, H. S., Mills, S. W., Mullineaux, L. S., Peterson, C. H., Fisher, C.
R., and Micheli, F.: Biotic interactions at hydrothermal vents: Recruitment
inhibition by the mussel Bathymodiolus thermophilus, Deep-Sea Res. Pt. I, 55,
1707–1717, 2008.
Levesque, C., Juniper, S. K., and Marcus, J.: Food resource partitioning and
competition among alvinellid polychaetes of Juan de Fuca Ridge hydrothermal
vents, Mar. Ecol.-Prog. Ser., 246, 173–182, 2003.
Levesque, C., Limén, H., and Juniper, S. K.: Origin, composition and
nutritional quality of particulate matter at deep-sea hydrothermal vents on
Axial Volcano, NE Pacific, Mar. Ecol.-Prog. Ser., 289, 43–52, 2005.
Levesque, C., Kim Juniper, S., and Limén, H.: Spatial organization of
food webs along habitat gradients at deep-sea hydrothermal vents on Axial
Volcano, Northeast Pacific, Deep. Res. Pt. I, 53,
726–739, 2006.
Levin, L. A. and Michener, R. H.: Isotopic evidence for chemosynthesis-based
nutrition of macrobenthos: the lightness of being at Pacific methane seeps,
Limnol. Oceanogr., 47, 1336–1345, 2002.
Levin, L. A., Mendoza, G. F., Konotchick, T., and Lee, R.: Macrobenthos
community structure and trophic relationships within active and inactive
Pacific hydrothermal sediments, Deep-Sea Res. Pt. II,
56, 1632–1648, 2009.
Levin, L. A., Ziebis, W., F. Mendoza, G., Bertics, V. J., Washington, T.,
Gonzalez, J., Thurber, A. R., Ebbe, B., and Lee, R. W.: Ecological release
and niche partitioning under stress: Lessons from dorvilleid polychaetes in
sulfidic sediments at methane seeps, Deep-Sea Res. Pt. II, 92, 214–233, 2013.
Limén, H., Levesque, C., and Juniper, K. S.: POM in macro-/meiofaunal
food webs associated with three flow regimes at deep-sea hydrothermal vents
on Axial Volcano, Juan de Fuca Ridge, Mar. Biol., 153, 129–139, 2007.
Luther, G., Rozan, T., Taillefert, M., Nuzzio, D., Di Meo, C., Shank, T.,
Lutz, R., and Cary, C.: Chemical speciation drives hydrothermal vent
ecology, Nature, 410, 813–816, 2001.
Maddocks, R. F. and Steineck, P. L.: Ostracoda from experimental wood-island
habitats in the deep sea, Micropaleontology, 33, 318–355, 1987.
Marcus, J., Tunnicliffe, V., and Butterfield, D. A.: Post-eruption succession
of macrofaunal communities at diffuse flow hydrothermal vents on Axial
Volcano, Juan de Fuca Ridge, Northeast Pacific, Deep-Sea Res. Pt. II, 56, 1586–1598, 2009.
Martell, K. A., Tunnicliffe, V., and Macdonald, I. R.: Biological features of
a buccinid whelk (Gastropoda, Neogastropoda) at the Endeavour vent fields of
Juan de Fuca Ridge, northeast Pacific, J. Molluscan Stud., 68, 45–53, 2002.
Matabos, M., Plouviez, S., Hourdez, S., Desbruyères, D., Legendre, P.,
Warén, A., Jollivet, D., and Thiébaut, E.: Faunal changes and
geographic crypticism indicate the occurrence of a biogeographic transition
zone along the southern East Pacific Rise, J. Biogeogr., 38, 575–594,
2011.
Matabos, M., Cuvelier, D., Brouard, J., Shillito, B., Ravaux, J., Zbinden,
M., Barthelemy, D., Sarradin, P.-M., and Sarrazin, J.: Behavioural study of
two hydrothermal crustacean decapods: Mirocaris fortunata and Segonzacia mesatlantica, from the lucky strike vent
field (mid-Atlantic Ridge), Deep-Sea Res. Pt. II, 121,
146–158, 2015.
McHugh, D. and Tunnicliffe, V.: Ecology and reproductive biology of the
hydrothermal vent polychaete Amphisamytha galapagensis (Ampharetidae), Mar. Ecol.-Prog. Ser., 106,
111–120, 1994.
McLean, J. H.: New archaeogastropod limpets from hydrothermal vents;
superfamily Lepetodrilacea I. Systematic descriptions, Philos. T. R.
Soc. London B, 319, 1–32, 1988.
McLean, J. H.: New slit-limpets (Scissurellacea and Fissurellacea) from
hydrothermal vents, Contributions Sci. Hist. museum Los Angeles Cty, 1989.
Micheli, F., Peterson, C. H., Mullineaux, L. S., Fisher, C. R., Mills, S.
W., Sancho, G., Johnson, G. A., and Lenihan, H. S.: Predation structures
communities at deep-sea hydrothermal vents, Ecol. Monogr., 72, 365–382,
2002.
Michener, R. and Lajtha, K.: Stable isotopes in ecology and environmental
science, Blackwell, Oxford, 2008.
Moalic, Y., Desbruyères, D., Duarte, C. M., Rozenfeld, A. F., Bachraty,
C., and Arnaud-Haond, S.: Biogeography revisited with network theory:
Retracing the history of hydrothermal vent communities, Syst. Biol., 61,
127–137, 2011.
Mullineaux, L. S., Fisher, C. R., Peterson, C. H., and Schaeffer, S. W.:
Tubeworm succession at hydrothermal vents: use of biogenic cues to reduce
habitat selection error?, Oecologia, 123, 275–284, 2000.
Mullineaux, L. S., Peterson, C. H., Micheli, F., and Mills, S. W.:
Successional mechanism varies along a gradient in hydrothermal fluid flux at
deep-sea vents, Ecol. Monogr., 73, 523–542, 2003.
Nedoncelle, K., Lartaud, F., de Rafelis, M., Boulila, S., and Le Bris, N.: A
new method for high-resolution bivalve growth rate studies in hydrothermal
environments, Mar. Biol., 160, 1427–1439, 2013.
Nedoncelle, K., Lartaud, F., Contreira-Pereira, L., Yücel, M.,
Thurnherr, A. M., Mullineaux, L., and Le Bris, N.: Bathymodiolus growth dynamics in
relation to environmental fluctuations in vent habitats, Deep-Sea Res. Pt.
I, 106, 183–193, 2015.
Newsome, S. D., del Rio, C. M., Bearhop, S., and Phillips, D. L.: A niche for
isotopic ecology, Front. Ecol. Environ., 5, 429–436, 2007.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn,
D., Minchin, P. R., O'hara, R. B., Simpson, G. L., Solymos, P., Henry, M.,
Stevens, H., Szoecs, E., and Wagner, H.: vegan: Community Ecology Package, R
Packag. version 2.4-2, available at:
https://CRAN.R-project.org/package=vegan, last access: September 2017.
Pettibone, M. H.: New genera and species of deep-sea Macellicephalinae and
Harmothoinae (Polychaeta: Polynoidae) from the hydrothermal rift areas off
the Galapagos and Western Mexico at 21∘ N and from the Santa
Catalina Channel, Proc. Biol. Soc. Washingt., 98, 740–757, 1985.
Pettibone, M. H.: New species and new records of scaled polychaetes
(Polychaeta: Polynoidae) from hydrothermal vents of the Northeast Pacific
Explorer and Juan de Fuca Ridges, Proc. Biol. Soc. Washingt., 101,
192–208, 1988.
Portail, M., Olu, K., Dubois, S. F., Escobar-Briones, E., Gelinas, Y., Menot,
L., and Sarrazin, J.: Food-web complexity in Guaymas Basin hydrothermal vents
and cold seeps, PLoS One, 11, e0162263, https://doi.org/10.1371/journal.pone.0162263,
2016.
Ramirez-Llodra, E., Shank, T., and German, C.: Biodiversity and biogeography
of hydrothermal vent species: thirty years of discovery and investigations,
Oceanography, 20, 30–41, 2007.
Sancho, G., Fisher, C. R., Mills, S., Micheli, F., Johnson, G. A., Lenihan,
H. S., Peterson, C. H., and Mullineaux, L. S.: Selective predation by the
zoarcid fish Thermarces cerberus at hydrothermal vents, Deep-Sea Res. Pt. I,
52, 837–844, 2005.
Sarrazin, J. and Juniper, S. K.: Biological characteristics of a
hydrothermal edifice mosaic community, Mar. Ecol.-Prog. Ser., 185, 1–19,
1999.
Sarrazin, J., Robigou, V., Juniper, S. K., and Delaney, J. R.: Biological and
geological dynamics over four years on a high-temperature sulfide structure
at the Juan de Fuca Ridge hydrothermal observatory, Mar. Ecol.-Prog. Ser.,
153, 5–24, 1997.
Sarrazin, J., Juniper, S. K., Massoth, G., and Legendre, P.: Physical and
chemical factors influencing species distributions on hydrothermal sulfide
edifices of the Juan de Fuca Ridge, northeast Pacific, Mar. Ecol.-Prog. Ser., 190, 89–112, 1999.
Sarrazin, J., Levesque, C., Juniper, S. K., and Tivey, M. K.: Mosaic
community dynamics on Juan de Fuca Ridge sulphide edifices: Substratum,
temperature and implications for trophic structure, Cah. Biol. Mar.,
43, 275–279, 2002.
Sarrazin, J., Cuvelier, D., Peton, L., Legendre, P., and Sarradin, P.-M.:
High-resolution dynamics of a deep-sea hydrothermal mussel assemblage
monitored by the EMSO-Açores MoMAR observatory, Deep-Sea Res. Pt. I, 90, 62–75, 2014.
Sarrazin, J., Legendre, P., de Busserolles, F., Fabri, M. C., Guilini, K.,
Ivanenko, V. N., Morineaux, M., Vanreusel, A., and Sarradin, P. M.:
Biodiversity patterns, environmental drivers and indicator species on a
high-temperature hydrothermal edifice, Mid-Atlantic Ridge, Deep-Sea Res. Pt.
II, 121, 177–192, 2015.
Scheltema, A. and Kuzirian, A. M.: Helicoradomenia juani gen. et sp. nov., a Pacific hydrothermal
vent Aplacophora (Mollusca: Neomeniomorpha), The Veliger, 34, 195–203,
1991.
Shoemaker, C. R.: The amphipoda of the Cheticamp expedition of 1917,
Contrib. to Can. Biol. Fish., 5, 219–359, 1930.
Soto, L. A.: Stable carbon and nitrogen isotopic signatures of fauna
associated with the deep-sea hydrothermal vent system of Guaymas Basin, Gulf
of California, Deep-Sea Res. Pt. II, 56,
1675–1682, 2009.
Southward, E. C., Tunnicliffe, V., and Black, M.: Revision of the species of
Ridgeia from northeast Pacific hydrothermal vents, with a redescription of Ridgeia piscesae Jones
(Pogonophora: Obturata = Vestimentifera), Can. J. Zool., 73, 282–295,
1995.
Stiller, J., Rousset, V., Pleijel, F., Chevaldonné, P., Vrijenhoek, R.
C., and Rouse, G. W.: Phylogeny, biogeography and systematics of hydrothermal
vent and methane seep Amphisamytha (Ampharetidae, Annelida), with descriptions of three
new species, Syst. Biodivers., 11, 35–65, 2013.
Sweetman, A. K., Levin, L. A., Rapp, H. T., and Schander, C.: Faunal trophic
structure at hydrothermal vents on the southern Mohn's Ridge, Arctic Ocean,
Mar. Ecol.-Prog. Ser., 473, 115–131, 2013.
Tanaka, H., Lelièvre, Y., and Yasuhara, M.: Molecular phylogeny and
description of a new hydrothermal vent species of Xylocythere
(Ostracoda) from the Juan de Fuca Ridge with a note on possible functions of
pore clusters, Marine Biodiversity, submitted, 2018.
Tsurumi, M. and Tunnicliffe, V.: Characteristics of a hydrothermal vent
assemblage on a volcanically active segment of Juan de Fuca Ridge, northeast
Pacific, Can. J. Fish. Aquat. Sci., 58, 530–542, 2001.
Tsurumi, M. and Tunnicliffe, V.: Tubeworm-associated communities at
hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific, Deep-Sea Res.
Pt. I, 50, 611–629, 2003.
Tunnicliffe, V.: The biology of hydrothermal vents: ecology and evolution,
Oceanogr. Mar. Biol. Annu. Rev., 29, 319–407, 1991.
Tunnicliffe, V. and Thomson, R.: The Endeavour hot vents area: a pilot Marine
Protected Area in Canada's Pacific Ocean, Report for Fisheries and Oceans
Canada, 1999.
Tunnicliffe, V., Desbruyères, D., Jollivet, D., and Laubier, L.:
Systematic and ecological characteristics of Paralvinella sulfincola Desbruyères and Laubier, a
new polychaete (family Alvinellidae) from northeast Pacific hydrothermal
vents, Can. J. Zool., 71, 286–297, 1993.
Turnipseed, M., Knick, K. E., Lipcius, R. N., Dreyer, J., and Van Dover, C.
L.: Diversity in mussel beds at deep-sea hydrothermal vents and cold seeps,
Ecol. Lett., 6, 518–523, 2003.
Urcuyo, I., Massoth, G., Julian, D., and Fisher, C.: Habitat, growth and
physiological ecology of a basaltic community of Ridgeia piscesae from the Juan de Fuca
Ridge, Deep-Sea Res. Pt. I, 50, 763–780, 2003.
Urcuyo, I., Bergquist, D., MacDonald, I., VanHorn, M., and Fisher, C.: Growth
and longevity of the tubeworm Ridgeia piscesae in the variable diffuse flow
habitats of the Juan de Fuca Ridge, Mar. Ecol.-Prog. Ser., 344, 143–157,
2007.
Van Dover, C. L.: Trophic relationships among invertebrates at the Kairei
hydrothermal vent field (Central Indian Ridge), Mar. Biol., 141,
761–772, 2002.
Van Dover, C. L.: Variation in community structure within hydrothermal vent
mussel beds of the East Pacific Rise, Mar. Ecol.-Prog. Ser., 253, 55–66,
2003.
Van Dover, C. L. and Fry, B.: Stable isotopic compositions of hydrothermal
vent organisms, Mar. Biol., 102, 257–263, 1989.
Van Dover, C. L. and Fry, B.: Microorganisms as food resources at deep-sea
hydrothermal vents, Limnol. Oceanogr., 39, 51–57, 1994.
Van Dover, C. L. and Trask, J. L.: Diversity at deep-sea hydrothermal vent
and intertidal mussel beds, Mar. Ecol.-Prog. Ser., 195, 169–178, 2000.
Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M., and Vrijenhoek,
R. C.: Evolution and biogeography of deep-sea vent and seep invertebrates,
Science, 295, 1253–1257, 2002.
Warén, A. and Bouchet, P.: Four new species of Provanna Dall (Prosobranchia,
Cerithiacea?) from East Pacific hydrothermal sites, Zool. Scr., 15,
157–164, 1986.
Warén, A. and Bouchet, P.: New gastropods from East Pacific hydrothermal
vents, Zool. Scr., 18, 67–102, 1989.
Windoffer, R. and Giere, O.: Symbiosis of the hydrothermal vent gastropod
Ifremeria nautilei (Provannidae) with endobacteria-structural analyses and ecological
considerations, Biol. Bull., 193, 381–392, 1997.
Xu, G., Jackson, D. R., Bemis, K. G., and Rona, P. A.: Time-series
measurement of hydrothermal heat flux at the Grotto mound, Endeavour
Segment, Juan de Fuca Ridge, Earth Planet. Sc. Lett., 404, 220–231, 2014.
Zekely, J., Van Dover, C. L., Nemeschkal, H. L., and Bright, M.: Hydrothermal
vent meiobenthos associated with mytilid mussel aggregations from the
Mid-Atlantic Ridge and the East Pacific Rise, Deep-Sea Res. Pt. I, 53, 1363–1378, 2006.
Short summary
The Main Endeavour vent field, a Marine Protected Area, is a target site for the cabled observatory Ocean Networks Canada, providing unprecedented opportunities to better understand vent ecosystem functioning. We report the diversity and food webs of six faunal communities associated with siboglinid tubeworms of the Grotto edifice. Better knowledge of the ecological functioning of these communities will help in assessing the role of the MPA as a management tool for hydrothermal vents ecosystems.
The Main Endeavour vent field, a Marine Protected Area, is a target site for the cabled...
Altmetrics
Final-revised paper
Preprint