Articles | Volume 15, issue 19
https://doi.org/10.5194/bg-15-5891-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-5891-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An intercomparison of oceanic methane and nitrous oxide measurements
University of Hawai'i at Manoa, Daniel K. Inouye Center for Microbial
Oceanography: Research and Education (C-MORE), Honolulu, Hawai'i, USA
Hermann W. Bange
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Damian L. Arévalo-Martínez
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Jonathan Barnes
Newcastle University, School of Natural and Environmental Sciences,
Newcastle upon Tyne, UK
Alberto V. Borges
Université de Liège, Unité d'Océanographie Chimique,
Liège, Belgium
Ian Brown
Plymouth Marine Laboratory, Plymouth, UK
John L. Bullister
National Oceanic and Atmospheric Administration, Pacific Marine
Environmental Laboratory, Seattle, Washington, USA
Macarena Burgos
University of Hawai'i at Manoa, Daniel K. Inouye Center for Microbial
Oceanography: Research and Education (C-MORE), Honolulu, Hawai'i, USA
Universidad de Cádiz, Instituto de Investigaciones Marinas, Departmento Química-Física, Cádiz, Spain
David W. Capelle
University of British Columbia, Department of Earth, Ocean and Atmospheric Sciences, British Columbia, Vancouver, Canada
Michael Casso
U.S. Geological Survey, Woods Hole Coastal and Marine Science Center,
Woods Hole, USA
Mercedes de la Paz
Instituto de Investigaciones Marinas, Vigo, Spain
current address: Instituto Español de Oceanografía,
Centro Oceanográfico de A Coruña, A Coruña, Spain
Laura Farías
University of Concepción, Department of Oceanography and Center
for climate research and resilience (CR2), Concepción, Chile
Lindsay Fenwick
University of British Columbia, Department of Earth, Ocean and Atmospheric Sciences, British Columbia, Vancouver, Canada
Sara Ferrón
University of Hawai'i at Manoa, Daniel K. Inouye Center for Microbial
Oceanography: Research and Education (C-MORE), Honolulu, Hawai'i, USA
Gerardo Garcia
University of Concepción, Department of Oceanography and Center
for climate research and resilience (CR2), Concepción, Chile
Michael Glockzin
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock,
Germany
David M. Karl
University of Hawai'i at Manoa, Daniel K. Inouye Center for Microbial
Oceanography: Research and Education (C-MORE), Honolulu, Hawai'i, USA
Annette Kock
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Sarah Laperriere
University of California Santa Barbara, Department of Ecology,
Evolution, and Marine Biology, Santa Barbara, USA
Cliff S. Law
National Institute of Water and Atmospheric Research (NIWA),
Wellington, New Zealand
Department of Chemistry, University of Otago, Dunedin, New
Zealand
Cara C. Manning
University of British Columbia, Department of Earth, Ocean and Atmospheric Sciences, British Columbia, Vancouver, Canada
Andrew Marriner
National Institute of Water and Atmospheric Research (NIWA),
Wellington, New Zealand
Jukka-Pekka Myllykangas
University of Helsinki, Department of Environmental Sciences,
Helsinki, Finland
John W. Pohlman
U.S. Geological Survey, Woods Hole Coastal and Marine Science Center,
Woods Hole, USA
Andrew P. Rees
Plymouth Marine Laboratory, Plymouth, UK
Alyson E. Santoro
University of California Santa Barbara, Department of Ecology,
Evolution, and Marine Biology, Santa Barbara, USA
Philippe D. Tortell
University of British Columbia, Department of Earth, Ocean and Atmospheric Sciences, British Columbia, Vancouver, Canada
Robert C. Upstill-Goddard
Newcastle University, School of Natural and Environmental Sciences,
Newcastle upon Tyne, UK
David P. Wisegarver
National Oceanic and Atmospheric Administration, Pacific Marine
Environmental Laboratory, Seattle, Washington, USA
Gui-Ling Zhang
University of China, Key Laboratory of Marine Chemistry Theory and Technology (MOE), Qingdao, China
Gregor Rehder
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock,
Germany
Viewed
Total article views: 6,608 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Jun 2018)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 4,781 | 1,664 | 163 | 6,608 | 519 | 183 | 190 |
- HTML: 4,781
- PDF: 1,664
- XML: 163
- Total: 6,608
- Supplement: 519
- BibTeX: 183
- EndNote: 190
Total article views: 5,821 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Oct 2018)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 4,318 | 1,349 | 154 | 5,821 | 387 | 174 | 183 |
- HTML: 4,318
- PDF: 1,349
- XML: 154
- Total: 5,821
- Supplement: 387
- BibTeX: 174
- EndNote: 183
Total article views: 787 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Jun 2018)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 463 | 315 | 9 | 787 | 132 | 9 | 7 |
- HTML: 463
- PDF: 315
- XML: 9
- Total: 787
- Supplement: 132
- BibTeX: 9
- EndNote: 7
Viewed (geographical distribution)
Total article views: 6,608 (including HTML, PDF, and XML)
Thereof 6,179 with geography defined
and 429 with unknown origin.
Total article views: 5,821 (including HTML, PDF, and XML)
Thereof 5,422 with geography defined
and 399 with unknown origin.
Total article views: 787 (including HTML, PDF, and XML)
Thereof 757 with geography defined
and 30 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 06 Nov 2025
Short summary
To determine the variability between independent measurements of dissolved methane and nitrous oxide, seawater samples were analyzed by multiple laboratories. The results revealed the influences of the different parts of the analytical process, from the initial sample collection to the calculation of the final concentrations. Recommendations are made to improve dissolved methane and nitrous oxide measurements to help preclude future analytical discrepancies between laboratories.
To determine the variability between independent measurements of dissolved methane and nitrous...
Altmetrics
Final-revised paper
Preprint