Articles | Volume 16, issue 12
https://doi.org/10.5194/bg-16-2501-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-2501-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The colonization of the oceans by calcifying pelagic algae
Baptiste Suchéras-Marx
CORRESPONDING AUTHOR
Aix Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE,
Aix-en-Provence, France
Emanuela Mattioli
CORRESPONDING AUTHOR
Université de Lyon, UCBL, ENSL, CNRS, LGL-TPE, 69622
Villeurbanne, France
Institut Universitaire de France, Paris, France
Pascal Allemand
Université de Lyon, UCBL, ENSL, CNRS, LGL-TPE, 69622
Villeurbanne, France
Fabienne Giraud
Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR,
ISTerre, 38000 Grenoble, France
Bernard Pittet
Université de Lyon, UCBL, ENSL, CNRS, LGL-TPE, 69622
Villeurbanne, France
Julien Plancq
School of Geographical and Earth Sciences, University of Glasgow,
Glasgow G12 8QQ, UK
Gilles Escarguel
Université de Lyon, UMR 5023 LEHNA, UCBL, CNRS, ENTPE, 69622
Villeurbanne, France
Related authors
Luc Beaufort, Yves Gally, Baptiste Suchéras-Marx, Patrick Ferrand, and Julien Duboisset
Biogeosciences, 18, 775–785, https://doi.org/10.5194/bg-18-775-2021, https://doi.org/10.5194/bg-18-775-2021, 2021
Short summary
Short summary
The coccoliths are major contributors to the particulate inorganic carbon in the ocean. They are extremely difficult to weigh because they are too small to be manipulated. We propose a universal method to measure thickness and weight of fine calcite using polarizing microscopy that does not require fine-tuning of the light or a calibration process. This method named "bidirectional circular polarization" uses two images taken with two directions of a circular polarizer.
Baptiste Suchéras-Marx, Fabienne Giraud, Alex Lena, and Alexandre Simionovici
J. Micropalaeontol., 36, 219–221, https://doi.org/10.1144/jmpaleo2016-013, https://doi.org/10.1144/jmpaleo2016-013, 2016
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Amande Roque-Bernard, Antoine Lucas, Eric Gayer, Pascal Allemand, Céline Dessert, and Eric Lajeunesse
Earth Surf. Dynam., 11, 363–381, https://doi.org/10.5194/esurf-11-363-2023, https://doi.org/10.5194/esurf-11-363-2023, 2023
Short summary
Short summary
Sediment transport in rivers is an important matter in Earth surface dynamics. We offer a new framework of understanding of the suspended sediment transport through observatory chronicles and a simple model that is able to catch the behavior during a flood event as well as time series in a steep river catchment. We validate our approach in both tropical and alpine environments, which also offers additional estimates of the size of the suspended sediment.
Samuel Mailliot, Emanuela Mattioli, Micaela Chaumeil Rodríguez, and Bernard Pittet
J. Micropalaeontol., 42, 1–12, https://doi.org/10.5194/jm-42-1-2023, https://doi.org/10.5194/jm-42-1-2023, 2023
Short summary
Short summary
Using biometric analysis, a new species, Similiscutum giganteum, has been described. Given its distinctive morphology and its stratigraphic range restricted to upper Pliensbachian and Toarcian, the potential stratigraphic use of this new species has to be explored. A method for biometry is also described in detail. This paper proves the value of biometric analysis in taxonomic description.
Micaela Chaumeil Rodríguez, Emanuela Mattioli, and Juan Pablo Pérez Panera
J. Micropalaeontol., 41, 75–105, https://doi.org/10.5194/jm-41-75-2022, https://doi.org/10.5194/jm-41-75-2022, 2022
Short summary
Short summary
We present a deep systematic and taxonomic revision of the Early Jurassic calcareous nannofossils from the Neuquén Basin. The study focuses on characterizing the assemblages and identifying bioevents. The Pliensbachian associations from the Los Molles Formation are ilustrated for the first time, along with new biostratigraphic data from the area. Similarities found with locaties from the proto-Atlantic region suggest a connection between the Pacific and Tethys oceans during the Early Jurassic.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Luc Beaufort, Yves Gally, Baptiste Suchéras-Marx, Patrick Ferrand, and Julien Duboisset
Biogeosciences, 18, 775–785, https://doi.org/10.5194/bg-18-775-2021, https://doi.org/10.5194/bg-18-775-2021, 2021
Short summary
Short summary
The coccoliths are major contributors to the particulate inorganic carbon in the ocean. They are extremely difficult to weigh because they are too small to be manipulated. We propose a universal method to measure thickness and weight of fine calcite using polarizing microscopy that does not require fine-tuning of the light or a calibration process. This method named "bidirectional circular polarization" uses two images taken with two directions of a circular polarizer.
Baptiste Suchéras-Marx, Fabienne Giraud, Alex Lena, and Alexandre Simionovici
J. Micropalaeontol., 36, 219–221, https://doi.org/10.1144/jmpaleo2016-013, https://doi.org/10.1144/jmpaleo2016-013, 2016
Guilhem Aubert, Vincent J. Langlois, and Pascal Allemand
Earth Surf. Dynam., 4, 327–342, https://doi.org/10.5194/esurf-4-327-2016, https://doi.org/10.5194/esurf-4-327-2016, 2016
Short summary
Short summary
We performed the first direct numerical simulations of the process by which the pebbles transported by a river repeatedly impact its bedrock and consequently contribute to its erosion. Our results are consistent with existing experimental measurements and allow us to predict the incision rate of a river as a function of its water discharge, the amount of sediment available, and the roughness of the bedrock, which is essential to study the long-term evolution of mountain ranges.
Related subject area
Paleobiogeoscience: Past Ecosystem Functioning
The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the “boring billion”
Pyrite-lined shells as indicators of inefficient bioirrigation in the Holocene–Anthropocene stratigraphic record
The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits
Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes
Phytoplankton community disruption caused by latest Cretaceous global warming
A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change
A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake
Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Age structure, carbonate production and shell loss rate in an Early Miocene reef of the giant oyster Crassostrea gryphoides
Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum
Lena River delta formation during the Holocene
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage
Scaled biotic disruption during early Eocene global warming events
Northern peatland carbon stocks and dynamics: a review
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
Perran L. M. Cook, Miles Jennings, Daryl P. Holland, John Beardall, Christy Briles, Atun Zawadzki, Phuong Doan, Keely Mills, and Peter Gell
Biogeosciences, 13, 3677–3686, https://doi.org/10.5194/bg-13-3677-2016, https://doi.org/10.5194/bg-13-3677-2016, 2016
Short summary
Short summary
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green algae) since the mid 1980s. Prior to this, little is known about the history of cyanobacterial blooms in this system. We investigated the history of cyanobacterial blooms using a sediment core taken from the Gippsland Lakes which had each layer dated using lead isotopes. The results showed that surprising blooms of cyanobacteria were also prevalent prior to European settlement
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
K. Michaelian and A. Simeonov
Biogeosciences, 12, 4913–4937, https://doi.org/10.5194/bg-12-4913-2015, https://doi.org/10.5194/bg-12-4913-2015, 2015
Short summary
Short summary
We show that the fundamental molecules of life (those common to all three domains of life: Archaea, Bacteria, Eukaryota), including nucleotides, amino acids, enzyme cofactors, and porphyrin agglomerates, absorb light strongly from 230 to 280nm (in the UV-C) and have chemical affinity to RNA and DNA. This supports the "thermodynamic dissipation theory for the origin of life", which suggests that life arose and evolved as a response to dissipating the prevailing Archaean UV-C sunlight into heat.
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
P. Bragée, F. Mazier, A. B. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, and D. Hammarlund
Biogeosciences, 12, 307–322, https://doi.org/10.5194/bg-12-307-2015, https://doi.org/10.5194/bg-12-307-2015, 2015
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
S. J. Gibbs, P. R. Bown, B. H. Murphy, A. Sluijs, K. M. Edgar, H. Pälike, C. T. Bolton, and J. C. Zachos
Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, https://doi.org/10.5194/bg-9-4679-2012, 2012
Z. C. Yu
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, https://doi.org/10.5194/bg-9-4071-2012, 2012
Cited articles
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V.: Extraterrestrial
cause for the Cretaceous-Tertiary extinction, Science, 208, 1095–1108, https://doi.org/10.1126/science.208.4448.1095, 1980.
Aubry, M.-P., Bord, D., Beaufort, L., Kahn, A., and Boyd, S.: Trends in size
changes in the coccolithophorids, calcareous nannoplankton, during the
Mesozoic: A pilot study, Micropaleontology, 51, 309–318, https://doi.org/10.2113/gsmicropal.51.4.309, 2005.
Balch, W. M.: Re-evaluation of the physiological ecology of
coccolithophores, in: Coccolithophores: From molecular processes to global
impact, edited by: Thierstein, H. R. and Young, J. R., Springer-Verlag,
Heidelberg, Germany, 165–190, https://doi.org/10.1007/978-3-662-06278-4_7, 2004.
Barnosky, A. D.: Distinguishing the effects of the Red Queen and Court
Jester on Miocene mammal evolution in the northern Rocky Mountains, J.
Vertebr. Paleontol., 21, 172–185, https://doi.org/10.1671/0272-4634(2001)021[0172:DTEOTR]2.0.CO;2, 2001.
Baumann, K.-H., Böckel, B., and Frenz, M.: Coccolith contribution to
South Atlantic carbonate sedimentation, in: Coccolithophores: From molecular
processes to global impact, edited by: Thierstein, H. R. and Young, J. R.,
Springer-Verlag, Heidelberg, Germany, 367–402, https://doi.org/10.1007/978-3-662-06278-4_14, 2004.
Blakey, R. C.: Gondwana paleogeography from assembly to breakup – A 500 m.y.
odyssey, Geol. Soc. Am. Spec. Paper, 441, 1–28, https://doi.org/10.1130/2008.2441(01),
2008.
Bolton, C. T., Hernandez-Sanchez, M. T., Fuertes, M.-A., Gonzalez-Lemos, S.,
Abrevaya, L., Mendez-Vicente, A., Flores, J.-A., Probert, I., Giosan, L.,
Johnson, J., and Stoll, H. M.: Decrease in coccolithophore calcification and
CO2 since the middle Miocene, Nat. Commun., 7, 10284, https://doi.org/10.1038/ncomms10284, 2016.
Bown, P. R.: Calcareous nannoplankton evolution: a tale of two oceans,
Micropaleontology, 51, 299–308, https://doi.org/10.2113/gsmicropal.51.4.299, 2005.
Broecker, W. S. and Clark, E.: Ratio of coccolith CaCO3 to
foraminifera CaCO3 in late Holocene deep sea sediments,
Paleoceanography, 24, PA3205, https://doi.org/10.1029/2009PA001731, 2009.
Cermeño, P., Falkowski, P. G., Romero, O. E., Schaller, M. F., and
Vallina, S. M.: Continental erosion and the Cenozoic rise of marine diatoms,
P. Natl. Acad. Sci. USA, 112, 4239-4244, https://doi.org/10.1073/pnas.1412883112, 2015.
Channel, J. E. T., Erba, E., Muttoni, G., and Tremolada, F.: Early
Cretaceous magnetic stratigraphy in the APTICORE drill core and adjacent
outcrop at Cismon (Southern Alps, Italy), and the correlation to the
proposed Barremian/Aptian boundary stratotype, Geol. Soc. Am. Bull., 112,
1430–1443, 2000.
Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J.-J., and
Cappetta, H.: Deccan flood basalts at the Cretaceous/Tertiary boundary?,
Earth Planet. Sc. Lett., 80, 361–374, https://doi.org/10.1016/0012-821X(86)90118-4,
1986.
Erba, E. and Tremolada, F.: Nannofossil carbonate fluxes during the Early
Cretaceous: phytoplankton response to nutrification episodes, atmospheric
CO2, and anoxia, Paleoceanography, 19, PA1008, https://doi.org/10.1029/2003PA000884, 2004.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A.,
Schofield, O., and Taylor, F. J. R.: The evolution of modern eukaryotic
phytoplankton, Science, 305, 354–360, https://doi.org/10.1126/science.1095964, 2004.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat. Commun.,
8, 14845, https://doi.org/10.1038/ncomms14845, 2017.
Fraaije, R. H. B., Van Bakel, B. W. M., Jagt, J. W. M., and Viegas, P. A.:
The rise of a novel, plankton-based marine ecosystem during the Mesozoic: a
bottom-up model to explain new higher-tier invertebrate morphotypes, B. Soc.
Geol. Mex., 70, 187–200, 2018.
Frada, M., Probert, I., Allen, M. J., Wilson, W. H., and de Vargas, C.: The
“Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to
viral infection, P. Natl. Acad. Sci. USA, 105, 15944–15949, https://doi.org/10.1073/pnas.0807707105, 2008.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late
Cretaceous oceans-A 55 m.y. record of Earth's temperature and carbon cycle,
Geology, 40, 107–110, 2012.
Gardin, S., Krystyn, L., Richoz, S., Bartolini, A., and Galbrun, B.: Where
and when the earliest coccolithophores?, Lethaia, 45, 507–523, https://doi.org/10.1111/j.1502-3931.2012.00311.x, 2012.
Geisen, M., Bollmann, J., Herrle, J. O., Mutterlose, J., and Young, J. R.:
Calibration of the random settling technique for calculation of absolute
abundances of calcareous nannoplankton, Micropaleontology, 45, 437–442,
https://doi.org/10.2307/1486125, 1999.
Gollain, G., Mattioli, E., Kenjo, S., Bartolini, A., and Reboulet, S.: Size
patterns of the coccolith Watznaueria barnesiae in the lower Cretaceous:
Biotic versus abiotic forcing, Mar. Micropaleontol., https://doi.org/10.1016/j.marmicro.2019.03.012, 2019.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The Geologic
Time Scale 2012, Elsevier, Amsterdam, 1144 pp., 2012.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: paleontological
statistics software package for education and data analysis, Palaeontol.
Electronica, 4, 1–9, 2001.
Hannisdal, B., Henderiks, J., and Liow, L. H.: Long-term evolutionary and
ecological responses of calcifying phytoplankton to changes in atmospheric
CO2, Glob. Change Biol., 18, 3504–3516, https://doi.org/10.1111/gcb.12007, 2012.
Hart, M. B., Hylton, M. D., Oxford, M. J., Price, G. D., Hudson, W., and
Smart, C. W.: The search for the origin of the planktic foraminifera, J.
Geol. Soc. London, 160, 341–343, https://doi.org/10.1144/0016-764903-003, 2003.
Henderiks, J.: Coccolithophore size rules – Reconstructing ancient cell
geometry and cellular calcite quota from fossil coccoliths, Mar.
Micropaleontol., 67, 143–154, https://doi.org/10.1016/j.marmicro.2008.01.005, 2008.
Herrle, J. O.: Reconstructing nutricline dynamics of mid-Cretaceous oceans:
evidence from calcareous nannofossils from the Niveau Paquier black shale
(SE France), Mar. Micropaleontol., 47, 307–321, 2003
Herrmann, S. and Thierstein, H. R.: Cenozoic coccolith size
changes–evolutionary and/or ecological controls?, Palaeogeogr.
Palaeocl., 333/334, 92–106, https://doi.org/10.1016/j.palaeo.2012.03.011, 2012.
Hull, P. M., Norris, R. D., Bralower, T. J., and Schueth, J. D.: A role for
chance in marine recovery from the end–Cretaceous extinction, Nat. Geosci.,
4, 856–860, https://doi.org/10.1038/ngeo1302, 2011.
Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H., and Falkowski, P. G.:
Evolutionary trajectories and biogeochemical impacts of marine eukaryotic
phytoplankton, Annu. Rev. Ecol. Evol. S., 35, 523–556, https://doi.org/10.1146/annurev.ecolsys.35.112202.130137, 2004.
Klaas, C. and Archer, D. E.: Association of sinking organic matter with
various types of mineral ballast in the deep sea: Implications for the rain
ratio, Global Biogeochem. Cy., 16, 1116, https://doi.org/10.1029/2001GB001765, 2002.
Knoll, A. H. and Follows, M. J.: A bottom-up perspective on ecosystem change in
Mesozoic oceans, P. Roy. Soc. B-Biol. Sci., 283, 20161755, https://doi.org/10.1098/rspb.2016.1755, 2016.
Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K., and Mann, D. G.: The
origin and evolution of the diatoms: their adaptation to a planktonic
existence, in: evolution of primary producers in the sea, edited by:
Falkowski, P. G. and Knoll, A. H., Academic Press, Burlington, USA, 207–249,
https://doi.org/10.1016/B978-012370518-1/50012-6, 2007.
Lees, J. A., Bown, P. R., and Mattioli, E.: Problems with proxies?
Cautionary tales of calcareous nannofossil paleoenvironmental indicators,
Micropaleontol., 51, 333–343, 2005.
Litchman, E., Klausmeier, C. A., Miller, J. R., Schofield, O. M., and
Falkowski, P. G.: Multi-nutrient, multi-group model of present and future
oceanic phytoplankton communities, Biogeosciences, 3, 585–606, https://doi.org/10.5194/bg-3-585-2006, 2006.
Margalef, R.: Life-forms of phytoplankton as survival alternatives in an
unstable environment, Oceanol. Acta, 1, 493–509, 1978.
Mattioli, E., Pittet, B., Petitpierre, L., and Mailliot, S.: Dramatic
decrease of pelagic carbonate production by nannoplankton across the Early
Toarcian anoxic event (T-OAE), Glob. Planet. Change 65, 134–145, https://doi.org/10.1016/j.gloplacha.2008.10.018, 2009.
Mejía, L. M., Méndez-Vicente, A., Abrevaya, L., Lawrence, K. T.,
Ladlow, C., Bolton, C., Cacho, I., and Stoll, H.: A diatom record of
CO2 decline since the late Miocene, Earth Planet. Sc. Lett., 479,
18–33, https://doi.org/10.1016/j.epsl.2017.08.034, 2017.
Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P. R., Rickaby, R. E. M.,
Poulton, A. J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs, S. J.,
Gutowska, M. A., Lee, R., Riebesell, U., Young, J. R., and Ridgwell, A.: Why
marine phytoplankton calcify, Sci. Adv., 2, e1501822, https://doi.org/10.1126/sciadv.1501822, 2016.
Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., and Heine, C.:
Long-term sea-level fluctuations driven by ocean basin dynamics, Science,
319, 1357–1362, https://doi.org/10.1126/science.1151540, 2008.
Mutterlose, J., Bottini, C., Schouten, S., and Sinninghe Damsté, J.S.:
High sea-surface temperatures during the early Aptian Oceanic Anoxic Event
1a in the Boreal Realm, Geology, 42, 439–442, https://doi.org/10.1130/g35394.1, 2014
Poulton, A. J., Adey, T. R., Balch, W. M., and Holligan, P. M.: Relating
coccolithophore calcification rates to phytoplankton community dynamics:
Regional differences and implications for carbon export, Deep-Sea Res. Pt.
2, 54, 538–557, https://doi.org/10.1016/j.dsr2.2006.12.003, 2007.
Pyenson, N. D., Kelley, N. P., and Parham, J. F.: Marine tetrapod
macroevolution: Physical and biological drivers on 250 Ma of invasions and
evolution in ocean ecosystems, Palaeogeogr. Palaeocl.,
400, 1–8, 2014
Reznick, D., Bryant, M. J., and Bashey, F.: r- and K-selection revisited: the
role of population regulation in life–history evolution, Ecology, 83,
1509–1520, 2002.
Roth, P. H.: Mesozoic paleoceanography of the North Atlantic and Tethys
Oceans, in: North Atlantic Paleoceanography, edited by: Summerhayes, C. P. and
Shackleton, N. J., Geol. Soc. Spec. Publ. Lond., 21, 299–320, 1986.
Roth, P. H.: Ocean circulation and calcareous nannoplankton evolution during
the Jurassic and Cretaceous, Palaeogeogr. Palaeocl., 74,
111–126, https://doi.org/10.1016/0031-0182(89)90022-9, 1989.
Spencer-Cervato, C.: The Cenozoic deep sea microfossil record: explorations
of the DSDP/ODP sample set using the Neptune database, Palaeontol.
Electronica, 2, 1–270, 1999.
Suchéras-Marx, B. and Henderiks, J.: Downsizing the pelagic carbonate
factory: Impacts of calcareous nannoplankton evolution on carbonate burial
over the past 17 million years, Glob. Planet. Change, 123, 97–109, https://doi.org/10.1016/j.gloplacha.2014.10.015, 2014.
Suchéras-Marx, B., Guihou, A., Giraud, F., Lécuyer, C., Allemand,
P., Pittet, B., and Mattioli, E.: Impact of the Middle Jurassic
diversification of Watznaueria (coccolith–bearing algae) on the carbon cycle and
δ13C of bulk marine carbonates, Glob. Planet. Change, 86–87,
92–100, https://doi.org/10.1016/j.gloplacha.2012.02.007, 2012.
Suchéras-Marx, B., Giraud, F., Mattioli, E., and Escarguel, G.:
Paleoenvironmental and paleobiological origins of coccolithophorid genus
Watznaueria emergence during the Late Aalenian–Early Bajocian, Paleobiology, 41,
415–435, https://doi.org/10.1017/pab.2015.8, 2015.
Suchéras-Marx, B., Mattioli, E., Allemand, P., Giraud, F., Pittet, B., Plancq, J., Escarguel, G.: Calcareous nannofossils absolute abundance and accumulation rates, PANGAEA, https://doi.org/10.1594/PANGAEA.902908, last access: 24 June 2019.
Thomsen, E.: Seasonal variation in boreal Early Cretaceous calcareous
nannofossils, Mar. Micropaleontol., 15, 123–152, https://doi.org/10.1016/0377-8398(89)90008-X, 1989.
Tozzi, S., Schofield, O. M., and Falkowski, P. G.: Historical climate change
and ocean turbulence as selective agents for two key phytoplankton
functional groups, Mar. Ecol. Prog. Ser., 274, 123–132, https://doi.org/10.3354/meps274123, 2004.
Van Valen, L. A.: A new evolutionary law, Evol. Theor., 1, 1–30,
1973.
Vermeij, G. J.: The Mesozoic marine revolution: evidence from snails,
predators and grazers, Paleobiology, 3, 245–258, https://doi.org/10.1017/S0094837300005352, 1977.
Westermann, G. E. G.: Global bio-events in mid-Jurassic ammonites controlled
by seaways, in: The Ammonoidea: environment, ecology and evolutionary
change, edited by: House, M. R., The Systematics Association Special Volume,
Oxford University Press, UK, 187–226, 1993
Winter, A., Jordan, R. W., and Roth, P. H.: Biogeography of living
coccolithophores in ocean waters, in: Coccolithophores, edited by: Winter,
A. and Siesser, W. G., Cambridge University Press, Cambridge, UK, 161–178,
1994.
Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S., and Sinninghe
Damsté, J. S.: Molecular fossils from phytoplankton reveal secular
pCO2 trend over the Phanerozoic, Sci. Adv., 4, eaat4556, https://doi.org/10.1126/sciadv.aat4556, 2018.
Ziegler, P. A.: Evolution of the Arctic–North Atlantic and the Western
Tethys, Am. Assoc. Pet. Geol. Memoir, 43, 164–196,
1988.
Ziveri, P., Rutten, A., de Lange, G. J., Thomson, J., and Corselli, C.:
Present-day coccolith fluxes recorded in central eastern Mediterranean
sediment traps and surface sediments, Palaeogeogr. Palaeocl., 158, 175–195, https://doi.org/10.1016/S0031-0182(00)00049-3, 2000.
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets...
Altmetrics
Final-revised paper
Preprint