Environmental exposure histories can affect organismal sensitivity to climate change and ocean deoxygenation. The natural variability of environmental conditions for nearshore deep-sea habitats is poorly known due to technological challenges. We develop and test a novel, autonomous, hand-deployable lander outfitted with environmental sensors and a camera system and use it to characterize high-frequency oxygen, temperature, and pH variability at 100–400 m as well as seafloor community responses.
Environmental exposure histories can affect organismal sensitivity to climate change and ocean...
Environmental exposure histories can affect organismal sensitivity to climate change and ocean deoxygenation. The natural variability of environmental conditions for nearshore deep-sea habitats is poorly known due to technological challenges. We develop and test a novel, autonomous, hand-deployable lander outfitted with environmental sensors and a camera system and use it to characterize high-frequency oxygen, temperature, and pH variability at 100–400 m as well as seafloor community responses.
Environmental exposure histories can affect organismal sensitivity to climate change and ocean...