Articles | Volume 17, issue 4
https://doi.org/10.5194/bg-17-963-2020
https://doi.org/10.5194/bg-17-963-2020
Research article
 | 
24 Feb 2020
Research article |  | 24 Feb 2020

Basal thermal regime affects the biogeochemistry of subglacial systems

Ashley Dubnick, Martin Sharp, Brad Danielson, Alireza Saidi-Mehrabad, and Joel Barker

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (23 Dec 2019) by Tom J. Battin
AR by Ashley Dubnick on behalf of the Authors (06 Jan 2020)  Author's response   Manuscript 
ED: Publish as is (16 Jan 2020) by Tom J. Battin
AR by Ashley Dubnick on behalf of the Authors (24 Jan 2020)
Download
Short summary
We found that glaciers with basal temperatures near the melting point mobilize more solutes, nutrients, and microbes from the underlying substrate and are more likely to promote in situ biogeochemical activity than glaciers with basal temperatures well below the melting point. The temperature at the base of glaciers is therefore an important control on the biogeochemistry of ice near glacier beds, and, ultimately, the potential solutes, nutrients, and microbes exported from glaciated watersheds.
Altmetrics
Final-revised paper
Preprint