Articles | Volume 18, issue 4
https://doi.org/10.5194/bg-18-1375-2021
https://doi.org/10.5194/bg-18-1375-2021
Research article
 | 
23 Feb 2021
Research article |  | 23 Feb 2021

Intraseasonal variability of greenhouse gas emission factors from biomass burning in the Brazilian Cerrado

Roland Vernooij, Marcos Giongo, Marco Assis Borges, Máximo Menezes Costa, Ana Carolina Sena Barradas, and Guido R. van der Werf

Related authors

Dynamic savanna burning emission factors based on satellite data using a machine learning approach
Roland Vernooij, Tom Eames, Jeremy Russell-Smith, Cameron Yates, Robin Beatty, Jay Evans, Andrew Edwards, Natasha Ribeiro, Martin Wooster, Tercia Strydom, Marcos Vinicius Giongo, Marco Assis Borges, Máximo Menezes Costa, Ana Carolina Sena Barradas, Dave van Wees, and Guido R. Van der Werf
Earth Syst. Dynam., 14, 1039–1064, https://doi.org/10.5194/esd-14-1039-2023,https://doi.org/10.5194/esd-14-1039-2023, 2023
Short summary
A quadcopter unmanned aerial system (UAS)-based methodology for measuring biomass burning emission factors
Roland Vernooij, Patrik Winiger, Martin Wooster, Tercia Strydom, Laurent Poulain, Ulrike Dusek, Mark Grosvenor, Gareth J. Roberts, Nick Schutgens, and Guido R. van der Werf
Atmos. Meas. Tech., 15, 4271–4294, https://doi.org/10.5194/amt-15-4271-2022,https://doi.org/10.5194/amt-15-4271-2022, 2022
Short summary
Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants
Roland Vernooij, Ulrike Dusek, Maria Elena Popa, Peng Yao, Anupam Shaikat, Chenxi Qiu, Patrik Winiger, Carina van der Veen, Thomas Callum Eames, Natasha Ribeiro, and Guido R. van der Werf
Atmos. Chem. Phys., 22, 2871–2890, https://doi.org/10.5194/acp-22-2871-2022,https://doi.org/10.5194/acp-22-2871-2022, 2022
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Water chemistry and greenhouse gas concentrations in waterbodies of a thawing permafrost peatland complex in northern Norway
Jacqueline K. Knutson, François Clayer, Peter Dörsch, Sebastian Westermann, and Heleen A. de Wit
Biogeosciences, 22, 3899–3914, https://doi.org/10.5194/bg-22-3899-2025,https://doi.org/10.5194/bg-22-3899-2025, 2025
Short summary
Groundwater–CO2 emissions relationship in Dutch peatlands derived by machine learning using airborne and ground-based eddy covariance data
Laura M. van der Poel, Laurent V. Bataille, Bart Kruijt, Wietse Franssen, Wilma Jans, Jan Biermann, Anne Rietman, Alex J. V. Buzacott, Ype van der Velde, Ruben Boelens, and Ronald W. A. Hutjes
Biogeosciences, 22, 3867–3898, https://doi.org/10.5194/bg-22-3867-2025,https://doi.org/10.5194/bg-22-3867-2025, 2025
Short summary
Methane, carbon dioxide, and nitrous oxide emissions from two clear-water and two turbid-water urban ponds in Brussels (Belgium)
Thomas Bauduin, Nathalie Gypens, and Alberto V. Borges
Biogeosciences, 22, 3785–3805, https://doi.org/10.5194/bg-22-3785-2025,https://doi.org/10.5194/bg-22-3785-2025, 2025
Short summary
Uncertainties in carbon emissions from land use and land cover change in Indonesia
Ida Bagus Mandhara Brasika, Pierre Friedlingstein, Stephen Sitch, Michael O'Sullivan, Maria Carolina Duran-Rojas, Thais Michele Rosan, Kees Klein Goldewijk, Julia Pongratz, Clemens Schwingshackl, Louise P. Chini, and George C. Hurtt
Biogeosciences, 22, 3547–3561, https://doi.org/10.5194/bg-22-3547-2025,https://doi.org/10.5194/bg-22-3547-2025, 2025
Short summary
Observations of methane net sinks in the upland Arctic tundra
Antonio Donateo, Daniela Famulari, Donato Giovannelli, Arturo Mariani, Mauro Mazzola, Stefano Decesari, and Gianluca Pappaccogli
Biogeosciences, 22, 2889–2908, https://doi.org/10.5194/bg-22-2889-2025,https://doi.org/10.5194/bg-22-2889-2025, 2025
Short summary

Cited articles

Abreu, R. C. R., Hoffmann, W. A., Vasconcelos, H. L., Pilon, N. A., Rossatto, D. R., and Durigan, G.: The biodiversity cost of carbon sequestration in tropical savanna, Sci. Adv., 3, 1–8, https://doi.org/10.1126/sciadv.1701284, 2017. 
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
Anderson, R., Beatty, R., Russell-Smith, J., and van der Werf, G. R.: The global potential of indigenous fire management: findings of the regional feasibility assessments, UNU-IAS, Tokyo, available at: https://i.unu.edu/media/tfm.unu.edu/news/2151/Final-Report-Findings-Regional-Feasibility-Assessments-ISFMI.pdf (last access: 19 February 2021), 2015. 
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019. 
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Biogeochemistry, 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001. 
Download
Short summary
We used drones to measure greenhouse gas emission factors from fires in the Brazilian Cerrado. We compared early-dry-season management fires and late-dry-season fires to determine if fire management can be a tool for abating emissions. Although we found some evidence of increased CO and CH4 emission factors, the seasonal effect was smaller than that found in previous studies. For N2O, the third most important greenhouse gas, we found opposite trends in grass- and shrub-dominated areas.
Share
Altmetrics
Final-revised paper
Preprint