Articles | Volume 18, issue 9
https://doi.org/10.5194/bg-18-2791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The water column of the Yamal tundra lakes as a microbial filter preventing methane emission
Alexander Savvichev
Winogradsky Institute of Microbiology and Institute of Bioengineering,
Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow,
Russia
Igor Rusanov
Winogradsky Institute of Microbiology and Institute of Bioengineering,
Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow,
Russia
Yury Dvornikov
Department of Landscape Design and Sustainable Ecosystems,
Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6,
117198, Moscow, Russia
Vitaly Kadnikov
Winogradsky Institute of Microbiology and Institute of Bioengineering,
Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow,
Russia
Anna Kallistova
Winogradsky Institute of Microbiology and Institute of Bioengineering,
Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow,
Russia
Elena Veslopolova
Winogradsky Institute of Microbiology and Institute of Bioengineering,
Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow,
Russia
Antonina Chetverova
Institute of Earth Sciences, Saint Petersburg University,
199034, Saint Petersburg, Russia
Otto Schmidt Laboratory for Polar and Marine Research, Arctic and
Antarctic Research Institute, 199397, Saint Petersburg, Russia
Marina Leibman
Earth Cryosphere Institute of Tyumen Scientific Centre, Siberian
Branch, Russian Academy of Sciences, 625000, Tyumen, Russia
Pavel A. Sigalevich
CORRESPONDING AUTHOR
Winogradsky Institute of Microbiology and Institute of Bioengineering,
Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow,
Russia
Nikolay Pimenov
Winogradsky Institute of Microbiology and Institute of Bioengineering,
Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow,
Russia
Nikolai Ravin
Winogradsky Institute of Microbiology and Institute of Bioengineering,
Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow,
Russia
Artem Khomutov
Earth Cryosphere Institute of Tyumen Scientific Centre, Siberian
Branch, Russian Academy of Sciences, 625000, Tyumen, Russia
Related authors
No articles found.
Nina Nesterova, Ilia Tarasevich, Marina Leibman, Artem Khomutov, Alexander Kizyakov, Ingmar Nitze, and Guido Grosse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-164, https://doi.org/10.5194/essd-2025-164, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We created the first detailed map of retrogressive thaw slump (RTS) landforms across a large area of the West Siberian Arctic. RTSs are key features of abrupt permafrost thaw accelerated by climate change. Using satellite images and field data, we identified and classified over 6000 RTSs. This dataset helps scientists better understand how warming is changing Arctic landscapes and provides a trusted reference for training artificial intelligence to detect these landforms in the future.
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025, https://doi.org/10.5194/tc-19-1103-2025, 2025
Short summary
Short summary
Mapping soil moisture in Arctic permafrost regions is crucial for various activities, but it is challenging with typical satellite methods due to the landscape's diversity. Seasonal freezing and thawing cause the ground to periodically rise and subside. Our research demonstrates that this seasonal ground settlement, measured with Sentinel-1 satellite data, is larger in areas with wetter soils. This method helps to monitor permafrost degradation.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
The Cryosphere, 18, 4787–4810, https://doi.org/10.5194/tc-18-4787-2024, https://doi.org/10.5194/tc-18-4787-2024, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021, https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
Short summary
Antarctica consists mostly of frozen water, and it makes the continent sensitive to warming due to enhancing a transition/exchange of water from solid (ice and snow) to liquid (lakes and rivers) form. Therefore, it is important to know how fast water is exchanged in the Antarctic lakes. The study gives first estimates of scales for water exchange for five lakes located in the Larsemann Hills oasis. Two methods are suggested to evaluate the timescale for the lakes depending on their type.
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021, https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
Cited articles
Arctic and Antarctic Research Institute: Yamal-Gydan area, edited by: Sisko
R. K., Gidrometeoizdat, Saint-Petersburg, 1977.
Auman, A. J., Stolyar, S., Costello, A. M., and Lidstrom, M. E.: Molecular
characterization of methanotrophic isolates from freshwater lake sediment,
Appl. Environ. Microbiol., 66, 5259–5266,
https://doi.org/10.1128/AEM.66.12.5259-5266.2000, 2000.
Bastviken, D., Cole, J. J., Pace, M. L., and Tranvik, L. J.: Methane
emissions from lakes: Dependence of lake characteristics, two regional
assessments, and a global estimate, Global Biogeochem. Cy., 18, GB4009,
https://doi.org/10.1029/2004GB002238, 2004.
Biderre-Petit, C., Taib, N., Gardon, H., Hochart, C., and Debroas, D.: New
insights into the pelagic microorganisms involved in the methane cycle in
the meromictic Lake Pavin through metagenomics, FEMS Microbiol. Ecol., 95,
1–14, https://doi.org/10.1093/femsec/fiy183, 2019.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A. A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D. S., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D. A., Kholodov, A. L., Konstantinov,
P. Y., Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G.
V., Meiklejohn, I., Moskalenko, N. G., Oliva, M., Phillips, M., Ramos, M.,
Sannel, A. B. K., Sergeev, D. O., Seybold, C., Skryabin, P. N., Vasiliev, A.
A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is
warming at a global scale, Nat. Commun., 10, 1–11,
https://doi.org/10.1038/s41467-018-08240-4, 2019.
Brown, J., Ferrians, J. O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-Arctic Map of Permafrost and Ground-Ice Conditions, scale
1:10 000 000, Version 2, NSIDC: National Snow and Ice Data Center, Boulder,
2002.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J.
A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina
amplicon data, Nat. Method., 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K.: Carbon dioxide
supersaturation in the surface waters of lakes, Science, 265,
1568–1570, https://doi.org/10.1126/science.265.5178.1568, 1994.
Colin Murrell, J. and Jetten, M. S. M.: The microbial methane cycle,
Environ. Microbiol. Rep., 1, 279–284,
https://doi.org/10.1111/j.1758-2229.2009.00089.x, 2009.
Conrad, R.: Soil Microorganisms as Controllers of Atmospheric Trace Gases
(H2, CO, CH4, OCS, N2O, and NO), Microbiol. Rev., 60, 609–640,
https://doi.org/10.1007/978-3-642-61096-7_11, 1996.
Craig, H.: The natural distribution of radiocarbon and the exchange time of
carbon dioxide between atmosphere and sea, Tellus, 9, 1–17, 1957.
Crevecoeur, S., Vincent, W. F., Comte, J., and Lovejoy, C.: Bacterial
community structure across environmental gradients in permafrost thaw ponds:
methanotroph-rich ecosystems, Front. Microbiol., 6, 192,
https://doi.org/10.3389/fmicb.2015.00192, 2015.
Crevecoeur, S., Vincent, W. F., and Lovejoy, C.: Environmental selection of
planktonic methanogens in permafrost thaw ponds, Sci. Rep., 6, 31312,
https://doi.org/10.1038/srep31312, 2016.
Crevecoeur, S., Vincent, W. F., Comte, J., Matveev, A., and Lovejoy, C.:
Diversity and potential activity of methanotrophs in high methane-emitting
permafrost thaw ponds, edited by: Zhou, Z., PLoS One, 12, e0188223,
https://doi.org/10.1371/journal.pone.0188223, 2017.
de Jong, A. E. E., Zandt, M. H., Meisel, O. H., Jetten, M. S. M., Dean, J.
F., Rasigraf, O., and Welte, C. U.: Increases in temperature and nutrient
availability positively affect methane-cycling microorganisms in Arctic
thermokarst lake sediments, Environ. Microbiol., 20, 4314–4327,
https://doi.org/10.1111/1462-2920.14345, 2018.
Dostovalov, B. N. and Kudryavtsev, V. A.: General permafrost, MSU, Moscow,
1967.
Dridi, B., Fardeau, M. L., Ollivier, B., Raoult, D., and Drancourt, M.:
Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic
archaeon isolated from human faeces, Int. J. Syst. Evol. Microbiol., 62,
1902–1907, https://doi.org/10.1099/ijs.0.033712-0, 2012.
Dubikov, G. I.: Paragenesis of massive ground ice and frozen rocks of
Western Siberia, in Massive ground ice of the permafrost zone,
MPI SB RAS, Yakutsk, 24–42, 1982.
Dvornikov, Y. A., Leibman, M. O., Heim, B., Bartsch, A., Haas, A., Khomutov,
A. V., Gubarkov, A. A., Mikhaylova, M., Mullanurov, D. R., Widhalm, B.,
Skorospekhova, T. V., and Fedorova, I. V.: Geodatabase and WebGIS project for
long-term permafrost monitoring at the Vaskiny Dachi Research Station,
Yamal, Russia, Polarforschung, 85, 107–115, https://doi.org/10.2312/polfor.2016.007,
2016.
Dvornikov, Y. A., Leibman, M. O., Heim, B., Bartsch, A., Herzschuh, U.,
Skorospekhova, T. V., Fedorova, I. V., Khomutov, A. V., Widhalm, B.,
Gubarkov, A. A., and Rößler, S.: Terrestrial CDOM in lakes of Yamal
Peninsula: Connection to lake and lake catchment properties, Remote Sens.,
10, 167, https://doi.org/10.3390/rs10020167, 2018.
Dvornikov, Y. A., Leibman, M. O., Khomutov, A. V., Kizyakov, A. I., Semenov,
P. B., Bussmann, I., Babkin, E. M., Heim, B., Portnov, A., Babkina, E. A.,
Streletskaya, I. D., Chetverova, A. A., Kozachek, A. V., and Meyer, H.:
Gas-emission craters of the Yamal and Gydan peninsulas: A proposed mechanism
for lake genesis and development of permafrost landscapes, Permafr.
Periglac. Process., 30, 146–162, https://doi.org/10.1002/ppp.2014, 2019.
Edelstein, K. K., Alabyan, A. M., Gorin, S. L., and Popryadukhin, A. A.:
Hydrological and Hydrochemical Features of the Largest Lakes of the Yamal
Peninsula, Proc. Karelian Res. Cent. Russ. Acad. Sci., 10, 3–16,
https://doi.org/10.17076/lim571, 2017.
Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., and
Kartal, B.: Archaea catalyze iron-dependent anaerobic oxidation of methane,
P. Natl. Acad. Sci. USA, 113, 12792–12796, https://doi.org/10.1073/pnas.1609534113,
2016.
Fotiev, S. M.: The regularities in the formation of natural waters of
ionic-salt composition, Yamal peninsula, Earth's Cryosph., 3, 40–65,
1999.
Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., and Hartmann, M.:
Microbial diversity in European alpine permafrost and active layers, FEMS
Microbiol. Ecol., 92, fiw018, https://doi.org/10.1093/femsec/fiw018, 2016.
Glöckner, F. O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A.,
Ciuprina, A., Bruns, G., Yarza, P., Peplies, J., Westram, R., and Ludwig, W.:
25 years of serving the community with ribosomal RNA gene reference
databases and tools, J. Biotechnol., 261, 169–176,
https://doi.org/10.1016/j.jbiotec.2017.06.1198, 2017.
Graef, C., Hestnes, A. G., Svenning, M. M., and Frenzel, P.: The active
methanotrophic community in a wetland from the High Arctic, Environ.
Microbiol. Rep., 3, 466–472, https://doi.org/10.1111/j.1758-2229.2010.00237.x, 2011.
Grosse, G., Jones, B., and Arp, C.: Thermokarst Lakes, Drainage, and Drained
Basins, in Treatise on Geomorphology, vol. 8, edited by: Shroder, J.,
Giardino, R., and Harbor, J., Academic Press, San-Diego, 325–353, 2013.
Hamdan, L. J., Gillevet, P. M., Pohlman, J. W., Sikaroodi, M., Greinert, J.,
and Coffin, R. B.: Diversity and biogeochemical structuring of bacterial
communities across the Porangahau ridge accretionary prism, New Zealand,
FEMS Microbiol. Ecol., 77, 518–532,
https://doi.org/10.1111/j.1574-6941.2011.01133.x, 2011.
Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P.,
Yuan, Z., and Tyson, G. W.: Anaerobic oxidation of methane coupled to nitrate
reduction in a novel archaeal lineage, Nature, 500, 567–570,
https://doi.org/10.1038/nature12375, 2013.
Heslop, J. K., Walter Anthony, K. M., Sepulveda-Jauregui, A., Martinez-Cruz,
K., Bondurant, A., Grosse, G., and Jones, M. C.: Thermokarst lake
methanogenesis along a complete talik profile, Biogeosciences, 12,
4317–4331, https://doi.org/10.5194/bg-12-4317-2015, 2015.
Heuer, V. B., Pohlman, J. W., Torres, M. E., Elvert, M., and Hinrichs, K.-U.:
The stable carbon isotope biogeochemistry of acetate and other dissolved
carbon species in deep subseafloor sediments at the northern Cascadia
Margin, Geochim. Cosmochim. Ac., 73, 3323–3336,
https://doi.org/10.1016/J.GCA.2009.03.001, 2009.
Hobbie, J. E., Daley, R. J., and Jasper, S.: Use of nuclepore filters for
counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol.,
33, 1225–1228, https://doi.org/10.1128/aem.33.5.1225-1228.1977, 1977.
IPCC: Climate Change 2014: Synthesis Report, Geneva, 2014.
Kachurin, S. P.: Thermokarst on the USSR territory, edited by:
Melnikova, N. B., Academy of Sciences USSR, Moscow, 1961.
Kadnikov, V. V., Mardanov, A. V., and Ravin, N. V.: Sequencing Read Archive data set, BioProject accession no., PRJNA636944, The water column of the Yamal tundra lakes as a microbial filter preventing methane emission, available at: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA636944, last access: 10 June 2020.
Kizyakov, A. I. and Leibman, M. O.: Cryogenic relief-formation processes: A
review of 2010–2015 publications, Earth's Cryosph., 20, 40–52,
https://doi.org/10.21782/KZ1560-7496-2016-4(45-58), 2016.
Knief, C.: Diversity and habitat preferences of cultivated and uncultivated
aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker,
Front. Microbiol., 6, 1346, https://doi.org/10.3389/fmicb.2015.01346, 2015.
Kravtsova, V. I. and Rodionova, T. V.: Investigation of the dynamics in area
and number of thermokarst lakes in various regions of Russian cryolithozone
using satellite images, Earth's Cryosph., 20, 81–89, 2016.
Kritsuk, L. N.: Ground ice of West Siberia, edited by: Tolstikhin, O. N.,
Nauchniy Mir, Moscow, 2010.
Laurion, I., Vincent, W. F., MacIntyre, S., Retamal, L., Dupont, C.,
Francus, P., and Pienitz, R.: Variability in greenhouse gas emissions from
permafrost thaw ponds, Limnol. Oceanogr., 55, 115–133,
https://doi.org/10.4319/lo.2010.55.1.0115, 2010.
Leibman, M. O., Kizyakov, A. I., Plekhanov, A. V., and Streletskaya, I. D.:
New permafrost feature – deep crater in Central Yamal (West Siberia, Russia)
as a response to local climate fluctuations, Geogr. Environ. Sustain., 7,
68–79, https://doi.org/10.24057/2071-9388-2014-7-4-68-79, 2014.
Leu, A. O., Cai, C., McIlroy, S. J., Southam, G., Orphan, V. J., Yuan, Z.,
Hu, S., and Tyson, G. W.: Anaerobic methane oxidation coupled to manganese
reduction by members of the Methanoperedenaceae, ISME J., 14, 1030–1041,
https://doi.org/10.1038/s41396-020-0590-x, 2020.
Liebner, S., Rublack, K., Stuehrmann, T., and Wagner, D.: Diversity of
aerobic methanotrophic bacteria in a permafrost active layer soil of the
Lena Delta, Siberia, Microb. Ecol., 57, 25–35,
https://doi.org/10.1007/s00248-008-9411-x, 2009.
Magoč, T. and Salzberg, S. L.: FLASH: Fast length adjustment of short
reads to improve genome assemblies, Bioinformatics, 27, 2957–2963,
https://doi.org/10.1093/bioinformatics/btr507, 2011.
Marsh, P., Russell, M., Pohl, S., Haywood, H., and Onclin, C.: Changes in
thaw lake drainage in the Western Canadian Arctic from 1950 to 2000, Hydrol.
Process., 23, 145–158, https://doi.org/10.1002/hyp.7179, 2009.
Martinez-Cruz, K., Sepulveda-Jauregui, A., Walter Anthony, K. M., and
Thalasso, F.: Geographic and seasonal variation of dissolved methane and
aerobic methane oxidation in Alaskan lakes, Biogeosciences, 12,
4595–4606, https://doi.org/10.5194/bg-12-4595-2015, 2015.
Matheus Carnevali, P. B., Rohrssen, M., Williams, M. R., Michaud, A. B.,
Adams, H., Berisford, D., Love, G. D., Priscu, J. C., Rassuchine, O., Hand,
K. P., and Murray, A. E.: Methane sources in arctic thermokarst lake
sediments on the North Slope of Alaska, Geobiology, 13, 181–197,
https://doi.org/10.1111/gbi.12124, 2015.
Matheus Carnevali, P. B., Herbold, C. W., Hand, K. P., Priscu, J. C., and
Murray, A. E.: Distinct Microbial Assemblage Structure and Archaeal
Diversity in Sediments of Arctic Thermokarst Lakes Differing in Methane
Sources, Front. Microbiol., 9, 1192, https://doi.org/10.3389/fmicb.2018.01192, 2018.
McAuliffe, C.: Gas chromatographic determination of solutes by multiple phase equilibrium, Chemical Technology, 1, 46–51, 1971.
Negandhi, K., Laurion, I., and Lovejoy, C.: Bacterial communities and
greenhouse gas emissions of shallow ponds in the High Arctic, Polar Biol.,
37, 1669–1683, https://doi.org/10.1007/s00300-014-1555-1, 2014.
Oswald, K., Graf, J. S., Littmann, S., Tienken, D., Brand, A., Wehrli, B.,
Albertsen, M., Daims, H., Wagner, M., Kuypers, M. M. M., Schubert, C. J., and
Milucka, J.: Crenothrix are major methane consumers in stratified lakes,
ISME J., 11, 2124–2140, https://doi.org/10.1038/ismej.2017.77, 2017.
Patova, E. N.: Bloom-Forming Cyanoprokaryotes in Kharbeyskie Lakes of
Bolshezemelskaya Tundra, J. Sib. Fed. Univ. Biol., 7, 282–290, 2014.
Pimenov, N. V. and Bonch-Osmolovskaya, E. A.: 2 In Situ Activity Studies in
Thermal Environments, Academic Press, Method. Microbiol., 35, 29–53,
2006.
Pokrovskiy, O. S., Shirokova, L. S., and Kirpotin, S. N.: Microbiological
factors controlling carbon cycle in thermokarst water bodies of Western
Siberia, Tomsk State Univ. J. Biol., 3, 199–217, 2012.
Polishchuk, Y. M., Bogdanov, A. N., Muratov, I. N., Polishchuk, V. Y., Lim,
A. G., Manasypov, R. M., Shirokova, L. S., and Pokrovsky, O. S.: Minor
contribution of small thaw ponds to the pools of carbon and methane in the
inland waters of the permafrost-affected part of the Western Siberian
Lowland, Environ. Res. Lett., 13, 045002, https://doi.org/10.1088/1748-9326/aab046,
2018.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database
project: improved data processing and web-based tools, Nucleic. Acids Res.,
41, 590–596, https://doi.org/10.1093/nar/gks1219, 2013.
Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F.: VSEARCH: A
versatile open source tool for metagenomics, Peer J., 4, e2584,
https://doi.org/10.7717/peerj.2584, 2016.
Romanenko, F. A.: Dynamic of lake basins, in: Processes of erosion on Central
Yamal, edited by: Sidorchuk, A. Y. and Baranov, A.V., Gomel CNTDI,
Saint-Petersburg, 139–160, 1999.
Romanovskii, N. N.: Fundamentals of lithosphere cryogenesis, edited by:
Baulin, V. V., MSU, Moscow, 1993.
Salcher, M. M., Neuenschwander, S. M., Posch, T., and Pernthaler, J.: The
ecology of pelagic freshwater methylotrophs assessed by a high-resolution
monitoring and isolation campaign, ISME J., 9, 2442–2453,
https://doi.org/10.1038/ismej.2015.55, 2015.
Sassen, R. and Macdonald, I. R.: Hydrocarbons of experimental and natural
gas hydrates, Gulf of Mexico continental slope, Org. Geochem., 26,
289–293, https://doi.org/10.1016/S0146-6380(97)00001-6, 1997.
Savvichev, A. S., Leibman, M. O., Kadnikov, V., Kallistova, A., Pimenov, N.
V., Ravin, N., Dvornikov, Y. A., and Khomutov, A. V.: Microbiological study
of Yamal lakes: a key to understanding the evolution of gas emission
craters, Geosciences, 8, 478, https://doi.org/10.3390/geosciences8120478, 2018a.
Savvichev, A. S., Babenko, V. V., Lunina, O. N., Letarova, M. A., Boldyreva,
D. I., Weslopolova, E. F., Demidenko, N. A., Kokryatskaya, N. M., Krasnova,
E. D., Gaysin, V. A., Kostryukova, E. S., Gorlenko, V. M., and Letarov, A.
V.: Sharp water column stratification with an extremely dense microbial
population in a small meromictic lake Trekhtzetnoe separated from the White
Sea, Environ. Microbiol., 20, 3784–3797, https://doi.org/10.1111/1462-2920.14384,
2018b.
Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S.,
and Thalasso, F.: Methane and carbon dioxide emissions from 40 lakes along a
north-south latitudinal transect in Alaska, Biogeosciences, 12,
3197–3223, https://doi.org/10.5194/bg-12-3197-2015, 2015.
Serikova, S., Pokrovsky, O. S., Laudon, H., Kritzkov, I. V., Lim, A. G.,
Manasypov, R. M., and Karlsson, J.: High carbon emissions from thermokarst
lakes of Western Siberia, Nat. Commun., 10, 1552,
https://doi.org/10.1038/s41467-019-09592-1, 2019.
Singleton, C. M., McCalley, C. K., Woodcroft, B. J., Boyd, J. A., Evans, P.
N., Hodgkins, S. B., Chanton, J. P., Frolking, S., Crill, P. M., Saleska, S.
R., Rich, V. I., and Tyson, G. W.: Methanotrophy across a natural permafrost
thaw environment, ISME J., 12, 2544–2558,
https://doi.org/10.1038/s41396-018-0065-5, 2018.
Smith, G. J. and Wrighton, K. C.: Metagenomic Approaches Unearth
Methanotroph Phylogenetic and Metabolic Diversity, Curr. Issues Mol. Biol.,
33, 57–84, https://doi.org/10.21775/cimb.033.057, 2019.
Smith, S. L., Sheng, Y., MacDonald, G. M., and Hinzman, L. D.: Disappearing
Arctic Lakes, Science, 308, 1429, https://doi.org/10.1126/science.1108142,
2005.
Townsend-Small, A., Åkerström, F., Arp, C. D., and Hinkel, K. M.:
Spatial and Temporal Variation in Methane Concentrations, Fluxes, and
Sources in Lakes in Arctic Alaska, J. Geophys. Res.-Biogeo., 122,
2966–2981, https://doi.org/10.1002/2017JG004002, 2017.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F.,
Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M.,
Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J.,
MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.:
Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic
ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015,
2015.
Wacklin, P., Hoffmann, L., and Komárek, J.: Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahault) comb. nov., Fottea, 9, 59–64, 2009.
Walter Anthony, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin,
F. S. I.: Methane bubbling from Siberian thaw lakes as a positive feedback
to climate warming, Nature, 443, 71–75, https://doi.org/10.1038/nature05040,
2006.
Walter Anthony, K. M., Smith, L. C., and Chapin, F. S. I.: Methane bubbling
from northern lakes: Present and future contributions to the global methane
budget, Philos. T. R. Soc. A, 365,
1657–1676, https://doi.org/10.1098/rsta.2007.2036, 2007.
Wartiainen, I., Hestnes, A. G., McDonald, I. R., and Svenning, M. M.:
Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from
Arctic wetland soil on the Svalbard islands, Norway (78∘ N), Int. J. Syst.
Evol. Microbiol., 56, 109–113, https://doi.org/10.1099/ijs.0.63728-0, 2006.
Wen, G., Wang, T., Li, K., Wang, H., Wang, J., and Huang, T.: Aerobic
denitrification performance of strain Acinetobacter johnsonii WGX-9 using
different natural organic matter as carbon source: Effect of molecular
weight, Water Res., 164, 114956, https://doi.org/10.1016/j.watres.2019.114956, 2019.
Wik, M., Varner, R. K., Walter Anthony, K. M., MacIntyre, S., and Bastviken,
D.: Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99–105, https://doi.org/10.1038/ngeo2578, 2016.
Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E.,
Riley, W. J., Song, X., Graham, D. E., Song, C., and Tian, H.: Reviews and
syntheses: Four decades of modeling methane cycling in terrestrial
ecosystems, Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016,
2016.
Zepp Falz, K., Holliger, C., Großkopf, R., Liesack, W., Nozhevnikova, A.
N., Müller, B., Wehrli, B., and Hahn, D.: Vertical distribution of
methanogens in the anoxic sediment of Rotsee (Switzerland), Appl. Environ.
Microbiol., 65, 2402–2408, https://doi.org/10.1128/aem.65.6.2402-2408.1999, 1999.
Short summary
Microbial processes of the methane cycle were studied in four lakes of the central part of the Yamal Peninsula in an area of continuous permafrost: two large, deep lakes and two small and shallow ones. It was found that only small, shallow lakes contributed significantly to the overall diffusive methane emissions from the water surface during the warm summer season. The water column of large, deep lakes on Yamal acted as a microbial filter preventing methane emissions into the atmosphere.
Microbial processes of the methane cycle were studied in four lakes of the central part of the...
Altmetrics
Final-revised paper
Preprint