Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-403-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-403-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Svenja Reents
CORRESPONDING AUTHOR
Applied Plant Ecology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
Peter Mueller
Smithsonian Environmental Research Center, Edgewater, Maryland 21087, USA
Applied Plant Ecology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
Kai Jensen
Applied Plant Ecology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
Stefanie Nolte
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, NR33 0HT, UK
Related authors
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023, https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022, https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Cited articles
Allen, J. R. L.:
Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe,
Quaternary Sci. Rev.,
19, 1155–1231, 2000.
Bakker, J. P., Bos, D., and De Vries, Y.:
To graze or not to graze: that is the question, in: Challenges to the Wadden Sea area – Proceedings of the 10th international Scientific Wadden Sea Symposium, edited by: Essink, K., van Leeuwe, M., Kellermann, A., and Wolff, W. J., 31 October–3 November 2000, Dutch Ministry of Agriculture, Nature management and Fisheries, 67–87, 2003.
Beierkuhnlein, C., Thiel, D., Jentsch, A., Willner, E., and Kreyling, J.:
Ecotypes of European grass species respond differently to warming and extreme drought,
J. Ecol.,
99, 703–713, https://doi.org/10.1111/j.1365-2745.2011.01809.x, 2011.
Blanch, S. J., G. Ganf, G., and Walker, K. F.:
Growth and resource allocation in response to flooding in the emergent sedge Bolboschoenus medianus,
Aquat. Bot.,
63, 145–160, https://doi.org/10.1016/S0304-3770(98)00109-0, 1999.
Bockelmann, A. C. and Neuhaus, R.:
Competitive exclusion of Elymus athericus from a high-stress habitat in a European salt marsh,
J. Ecol.,
87, 503–513, 1999.
Bockelmann, A. C., Bakker, J. P., Neuhaus, R., and Lage, J.:
The relation between vegetation zonation, elevation and inundation frequency in a Wadden Sea salt marsh,
Aquat. Bot.,
73, 211–221, https://doi.org/10.1016/S0304-3770(02)00022-0, 2002.
Bockelmann, A. C., Reusch, B. H., Bijlsma, R., and Bakker, J. P.:
Habitat differentiation vs. isolation-by-distance: The genetic population structure of Elymus athericus in European salt marshes,
Mol. Ecol.,
12, 505–515, https://doi.org/10.1046/j.1365-294X.2003.01706.x, 2003.
Bolhuis, H., Fillinger, L., and Stal, L. J.:
Coastal microbial mat diversity along a natural salinity gradient,
PLoS One,
8, e63166, https://doi.org/10.1371/journal.pone.0063166, 2013.
Bolle, L. J., Neudecker, T., Vorberg, R., Damm, U., Diederichs, B., Jager, Z., Scholle, J., Daenhardt, A., Lüerßen, G., and Marencic, H.: Trends in Wadden Sea Fish Fauna, Part I: Trilateral Cooperation (Report No. C108/08), Wageningen IMARES, IJmuiden, 2009.
Box, G. E. P.: Some theorems on quadratic forms applied in the study of analysis of variance problems, I. Effect of inequality of variance in the one-way classification, Ann. Math. Stat., 25, 290–302, https://doi.org/10.1214/aoms/1177728786, 1954.
Chmura, G. L.:
What do we need to assess the sustainability of the tidal salt marsh carbon sink?,
Ocean Coast. Manage.,
83, 25–31, https://doi.org/10.1016/j.ocecoaman.2011.09.006, 2013.
Duarte, C. M., Dennison, W. C., Orth, R. J. W., and Carruthers, T. J. B.:
The charisma of coastal ecosystems: Addressing the imbalance,
Estuar. Coast.,
31, 233–238, https://doi.org/10.1007/s12237-008-9038-7, 2008.
Eleuterius, L. N. and Eleuterius, C. K.:
Tide levels and salt marsh zonation,
B. Mar. Sci.,
29, 394–400, 1979.
Esselink, P., Duin, W. E. Van, Bunje, J., Cremer, J., Folmer, E. O., Frikke, J., Glahn, M., Groot, A. V. De, Hecker, N., Hellwig, U., Jensen, K., Körber, P., Petersen, J., and Stock, M.:
Salt marshes, Wadden Sea Qual. Status Rep.,
edited by: Kloepper, S., Strempel R., Bostelmann, A., and Busch, J.,
Common Wadden Sea Secret, Wilhelmshaven, Germany, 2017.
Fitzgerald, D. M., Fenster, M. S., Argow, B. A., and Buynevich, I. V.:
Coastal impacts due to sea-level rise,
Annu. Rev. Earth Pl. Sc.,
36, 601–647, 2008.
Grace, J. B.:
Effects of water depth on Typha latifolia and Typha domingensis,
Am. J. Bot.,
76, 762–768, 1989.
Gray, A. J.:
Adaptation in perennial coastal plants – with particular reference to heritable variation in Puccinellia maritima and Ammophila arenaria,
Vegetatio,
61, 179–188, 1985.
Hanke, J. M., Ludewig, K., and Jensen, K.:
Effects of water level and competition on the endangered river corridor plant Cnidium dubium in the context of climate change,
Wetl. Ecol. Manag.,
23, 215–226, https://doi.org/10.1007/s11273-014-9371-5, 2015.
Hartnett, D. C. and Bazzaz, F. A.:
Physiological integration among intraclonal ramets in Solidago Canadensis,
Ecology,
64, 779–788, 1983.
Johnson, M. P.:
Photosynthesis,
Essays Biochem.,
60, 255–273, https://doi.org/10.1042/EBC20160016, 2016.
Kirwan, M. L. and Guntenspergen, G. R.:
Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh,
J. Ecol.,
100, 764–770, https://doi.org/10.1111/j.1365-2745.2012.01957.x, 2012.
Kirwan, M. L. and Guntenspergen, G. R.: Response of plant productivity to experimental flooding in a stable and a submerging marsh, Ecosystems, 18, 903–913, https://doi.org/10.1007/s10021-015-9870-0, 2015.
Kirwan, M. L. and Megonigal, J. P.:
Tidal wetland stability in the face of human impacts and sea-level rise,
Nature,
504, 53–60, https://doi.org/10.1038/nature12856, 2013.
Langley, J. A., Mozdzer, T. J., Shepard, K. A., Hagerty, S. B., and Megonigal, J. P.:
Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise,
Glob. Change Biol.,
19, 1495–1503, https://doi.org/10.1111/gcb.12147, 2013.
Lovett-Doust, L.:
Population dynamics and local specialization in a clonal perennial (Ranunculus Repens): II. The dynamics of leaves, and a reciprocal transplant-replant experiment,
J. Ecol.,
69, 757–768, https://doi.org/10.2307/2259634, 1981.
McGuinness, K. A.: Of rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumption, Austral Ecol., 27, 681–688, https://doi.org/10.1046/j.1442-9993.2002.01233.x, 2002.
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.:
A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2,
Front. Ecol. Environ.,
9(, 552–560, 2011.
Megonigal, J. P. and Day, F. P.:
Effects of flooding on root and shoot production of Bald Cypress in large experimental enclosures,
Ecology,
73, 1182–1193, 1992.
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., Van Wesenbeeck, B. K., Wolters, G., Jensen, K., Bouma, T. J., Miranda-Lange, M., and Schimmels, S.:
Wave attenuation over coastal salt marshes under storm surge conditions,
Nat. Geosci.,
7, 727–731, https://doi.org/10.1038/NGEO2251, 2014.
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., and Cahoon, D. R.:
Responses of coastal wetlands to rising sea level,
Ecology,
83, 2869–2877, 2002.
Morris, J. T., Sundberg, K., and Hopkinson, C. S.:
Salt marsh primary production and its responses to relative sea level and nutrients,
Oceanography,
26, 78–84, 2013.
Mozdzer, T. J. and Megonigal, J. P.:
Jack-and-Master trait responses to elevated CO2 and N: A comparison of native and introduced Phragmites australis,
PLoS One,
7, https://doi.org/10.1371/journal.pone.0042794, 2012.
Naidoo, G. and Naidoo, S.:
Waterlogging responses of Sporobolus-Virginicus (L) Kunth,
Oecologia,
90, 445–450, https://doi.org/10.1007/BF00317704, 1992.
Nolte, S., Müller, F., Schuerch, M., Wanner, A., Esselink, P., Bakker, J. P., and Jensen, K.:
Does livestock grazing affect sediment deposition and accretion rates in salt marshes?,
Estuar. Coast. Shelf S.,
135, 296–305, https://doi.org/10.1016/j.ecss.2013.10.026, 2013a.
Nolte, S., Koppenaal, E. C., Esselink, P., Dijkema, K. S., Schuerch, M., De Groot, A. V., Bakker, J. P., and Temmerman, S.:
Measuring sedimentation in tidal marshes: A review on methods and their applicability in biogeomorphological studies,
J. Coast. Conserv.,
17, 301–325, https://doi.org/10.1007/s11852-013-0238-3, 2013b.
Nolte, S., Wanner, A., Stock, M., and Jensen, K.:
Elymus athericus encroachment in Wadden Sea salt marshes is driven by surface elevation change,
Appl. Veg. Sci.,
22, 454–464, https://doi.org/10.1111/avsc.12443, 2019.
Olff, H., De Leeuw, J., Bakker, J. P., Platerink, R. J., and van Wijnen, H. J.:
Vegetation succession and herbivory in a salt marsh: Changes induced by sea level rise and silt deposition along an elevational gradient,
J. Ecol.,
85, 799–814, 1997.
Proffitt, C. E., Travis, S. E., and Edwards, K. R.:
Genotype and elevation influence Spartina alterniflora colonization and growth in a created salt marsh,
Ecol. Appl.,
13, 180–192, 2003.
Razgour, O., Forester, B., Taggart, J. B., Bekaert, M., Juste, J., Ibáñez, C., Puechmaille, S. J., Novella-Fernandez, R., Alberdi, A., and Manel, S.:
Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections,
P. Natl. Acad. Sci. USA,
116, 10418–10423, https://doi.org/10.1073/pnas.1820663116, 2019.
Rubio, G., Casasola, G., and Lavado, R. S.:
Adaptations and biomass production of two grasses in response to water logging and soil nutrient enrichment,
Oecologia,
102, 102–105, 1995.
Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., Mcowen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, J., Nicholls, R. J., and Brown, S.:
Future response of global coastal wetlands to sea-level rise,
Nature,
561, 231–234, https://doi.org/10.1038/s41586-018-0476-5, 2018.
Seliskar, D. M., Gallagher, J. L., Burdick, D. M., and Mutz, L. A.:
The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study,
J. Ecol.,
90, 1–11, 2002.
Silliman, B. R.:
Quick guide: Salt marshes,
Curr. Biol.,
24, 348–350, https://doi.org/10.1016/j.cub.2014.03.001, 2014.
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer, L., Benito-Garzón, M., Cornwell, W., Gianoli, E., van Kleunen, M., Naya, D. E., Nicotra, A. B., Poorter, H., and Zavala, M. A.:
The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change,
Ecol. Lett.,
17, 1351–1364, https://doi.org/10.1111/ele.12348, 2014.
Veeneklaas, R. M., Dijkema, K. S., Hecker, N., and Bakker, J. P.:
Spatio-temporal dynamics of the invasive plant species Elytrigia atherica on natural salt marshes,
Appl. Veg. Sci.,
16, 205–216, https://doi.org/10.1111/j.1654-109X.2012.01228.x, 2013.
Voesenek, L. A. C. J., Blom, C. W. P. M., and Pouwels, R. H.:
Root and shoot development of Rumex species under waterlogged conditions,
Can. J. Botany,
67, 1865–1869, https://doi.org/10.1139/b89-236, 1988.
Wanner, A., Suchrow, S., Kiehl, K., Meyer, W., Pohlmann, N., Stock, M., and Jensen, K.:
Scale matters: Impact of management regime on plant species richness and vegetation type diversity in Wadden Sea salt marshes,
Agr. Ecosyst. Environ.,
182, 69–79, https://doi.org/10.1016/j.agee.2013.08.014, 2014.
Yang, S. L.:
The role of Scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze estuary,
Estuar. Coast. Shelf S.,
47, 227–233, 1998.
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus,...
Altmetrics
Final-revised paper
Preprint