Articles | Volume 18, issue 13
https://doi.org/10.5194/bg-18-4185-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4185-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record
Section of Polar Terrestrial Environmental Systems, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam,
Germany
Institute for Environmental Science and Geography, University of
Potsdam, 14476 Potsdam, Germany
Ulrike Herzschuh
Section of Polar Terrestrial Environmental Systems, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam,
Germany
Institute for Environmental Science and Geography, University of
Potsdam, 14476 Potsdam, Germany
Institute for Biochemistry and Biology, University of Potsdam,
14476 Potsdam, Germany
Stefan Kruse
Section of Polar Terrestrial Environmental Systems, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam,
Germany
Andrei Andreev
Section of Polar Terrestrial Environmental Systems, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam,
Germany
Stuart Andrew Vyse
Section of Polar Terrestrial Environmental Systems, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam,
Germany
Bettina Winkler
Section of Polar Terrestrial Environmental Systems, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam,
Germany
Institute of Geosciences, University of Potsdam, 14476 Potsdam,
Germany
Boris K. Biskaborn
Section of Polar Terrestrial Environmental Systems, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam,
Germany
Luidmila Pestryakova
Institute of Natural Sciences, North-Eastern Federal University of
Yakutsk, Yakutsk, 677007, Russia
Section of Polar Terrestrial Environmental Systems, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam,
Germany
Related authors
Ramesh Glückler
E&G Quaternary Sci. J., 74, 101–103, https://doi.org/10.5194/egqsj-74-101-2025, https://doi.org/10.5194/egqsj-74-101-2025, 2025
Short summary
Short summary
This dissertation evaluates long-term wildfire dynamics in eastern Siberia. A total of 11 new records of Holocene wildfire activity, based on charcoal particles in lake sediments, show past trends of biomass burning in a region that was previously strongly under-represented. A newly fire-enabled forest model is used alongside the charcoal-based reconstructions to further refine interpretations of climate, vegetation, and humans as potential drivers behind past fire regime changes.
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395, https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Short summary
Despite rapidly intensifying wildfire seasons in Siberian boreal forests, little is known about long-term relationships between changes in vegetation and shifts in wildfire activity. Using lake sediment proxies, we reconstruct such environmental changes over the past 10,800 years in Central Yakutia. We find that a more open forest may facilitate increased amounts of vegetation burning. The present-day dense larch forest might yet be mediating the current climate-driven wildfire intensification.
Jacob Schladebach, Birgit Heim, Léa Enguehard, Mareike Wieczorek, Jakob Broers, Robert Jackisch, Josias Gloy, Kunyan Hao, James Tretton, Anna Gorshunova, and Stefan Kruse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-340, https://doi.org/10.5194/essd-2025-340, 2025
Preprint under review for ESSD
Short summary
Short summary
BorFIT is a novel training dataset for LiDAR point cloud segmentation and tree species detection in boreal forests. Comprising 384 plots across Siberia, Canada, and Alaska, it features 16,530 manually segmented trees of 12 species. BorFIT supports AI applications for analyzing species distribution, stand structure, and boreal forest response to climate change.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025, https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Short summary
Disturbances, such as fire, can change which vegetation grows in a forest, affecting water and carbon flows and, thus, the climate. Disturbances are expected to increase with climate change, but it is uncertain by how much. Using a simulation model, we studied how future climate, disturbances, and their combined effect impact northern (high-latitude) forest ecosystems. Our findings highlight the importance of considering these factors and the need to better understand how disturbances will change in the future.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025, https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Short summary
Geochronological, cryolithological, paleoecological, and modeling data reconstruct the Last Interglacial (LIG) climate around the New Siberian Islands and reveal significantly warmer conditions compared to today. The critical challenges in predicting future ecosystem responses lie in the fact that the land–ocean distribution during the LIG was markedly different from today, affecting the degree of continentality, which played a major role in modulating climate and ecosystem dynamics.
Ulrike Herzschuh, Thomas Böhmer, Weihan Jia, and Simeon Lisovski
EGUsphere, https://doi.org/10.5194/egusphere-2025-2678, https://doi.org/10.5194/egusphere-2025-2678, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We introduce a new climate proxy based on plant DNA preserved in lake sediments. Validated with a large surface sample dataset and applied to a sediment record, this method provides more accurate and robust reconstructions of past climate change than traditional vegetation proxies like pollen, likely due to a higher taxonomic resolution and more localized signal.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, Mareike Wieczorek, and Ulrike Herzschuh
Clim. Past, 21, 1001–1024, https://doi.org/10.5194/cp-21-1001-2025, https://doi.org/10.5194/cp-21-1001-2025, 2025
Short summary
Short summary
We present global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21 000 years, which are suitable for the evaluation of Earth-system-model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic and Tibetan Plateau areas during the Last Glacial Maximum and early deglaciation and in northern Africa and the Mediterranean region during the Holocene.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Andreas Marent, Jens Strauss, Dorothee Wilhelms-Dick, Luidmila A. Pestryakova, and Hanno Meyer
Biogeosciences, 22, 2327–2350, https://doi.org/10.5194/bg-22-2327-2025, https://doi.org/10.5194/bg-22-2327-2025, 2025
Short summary
Short summary
Globally, lake ecosystems have undergone significant shifts since the 1950s due to human activities. This study presents a unique ~220-year sediment record from a remote Siberian boreal lake, providing a multiproxy perspective on climate warming and anthropogenic air pollution. Analyses of diatom assemblages, diatom silicon isotopes, and carbon and nitrogen sediment proxies reveal complex biogeochemical interactions, highlighting anthropogenic influences even on remote water resources.
Laura Schild, Peter Ewald, Chenzhi Li, Raphaël Hébert, Thomas Laepple, and Ulrike Herzschuh
Earth Syst. Sci. Data, 17, 2007–2033, https://doi.org/10.5194/essd-17-2007-2025, https://doi.org/10.5194/essd-17-2007-2025, 2025
Short summary
Short summary
This study reconstructed vegetation and tree cover in the Northern Hemisphere from a harmonized dataset of pollen counts from sediment and peat cores for the past 14 000 years. A model was applied to correct for differences in pollen production between different plants, and modern remote-sensing forest cover was used to validate the reconstructed tree cover. Accurate data on past vegetation are invaluable for the investigation of vegetation–climate dynamics and the validation of vegetation models.
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data, 17, 1707–1730, https://doi.org/10.5194/essd-17-1707-2025, https://doi.org/10.5194/essd-17-1707-2025, 2025
Short summary
Short summary
The Lena Delta is the largest river delta in the Arctic and represents a biodiversity hotspot. Here, we describe multiple field datasets and a detailed habitat classification map for the Lena Delta. We present context and methods of these openly available datasets and show how they can improve our understanding of the rapidly changing Arctic tundra system.
Ramesh Glückler
E&G Quaternary Sci. J., 74, 101–103, https://doi.org/10.5194/egqsj-74-101-2025, https://doi.org/10.5194/egqsj-74-101-2025, 2025
Short summary
Short summary
This dissertation evaluates long-term wildfire dynamics in eastern Siberia. A total of 11 new records of Holocene wildfire activity, based on charcoal particles in lake sediments, show past trends of biomass burning in a region that was previously strongly under-represented. A newly fire-enabled forest model is used alongside the charcoal-based reconstructions to further refine interpretations of climate, vegetation, and humans as potential drivers behind past fire regime changes.
Jan Nitzbon, Moritz Langer, Luca Alexander Müller-Ißberner, Elisabeth Dietze, and Martin Werner
EGUsphere, https://doi.org/10.5194/egusphere-2024-4011, https://doi.org/10.5194/egusphere-2024-4011, 2025
Short summary
Short summary
Using model simulations, we show that the larger seasonal temperature amplitude during the mid Holocene and last interglaical led to marked surficial thaw during warm summers, while cold winters allowed for permafrost persistence at depth and more active thermal contraction cracking. We argue that past interglacial climates have limited suitability as analogues for future permafrost dynamics, for which a trajectory of unprecedented thaw magnitude since at least 400000 years is anticipated.
Sarah Haupt, Josias Gloy, Luca Farkas, Katharina Schildt, Lisa Trimborn, and Stefan Kruse
EGUsphere, https://doi.org/10.5194/egusphere-2024-4036, https://doi.org/10.5194/egusphere-2024-4036, 2025
Short summary
Short summary
We studied alpine treeline migration in boreal forests using an enhanced vegetation model that includes snow processes. Our findings revealed site-specific migration drivers, with snow playing a dual role: supporting seedling establishment while increasing mortality risks. Results emphasize the need to include snow processes in vegetation models to better predict boreal forest responses.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Boris K. Biskaborn, Amy Forster, Gregor Pfalz, Lyudmila A. Pestryakova, Kathleen Stoof-Leichsenring, Jens Strauss, Tim Kröger, and Ulrike Herzschuh
Biogeosciences, 20, 1691–1712, https://doi.org/10.5194/bg-20-1691-2023, https://doi.org/10.5194/bg-20-1691-2023, 2023
Short summary
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022, https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
Short summary
We present data which were collected on expeditions to the northeast of the Russian Federation. One table describes the 226 locations we visited during those expeditions, and the other describes 40 289 trees which we recorded at these locations. We found out that important information on the forest cannot be predicted precisely from satellites. Thus, for anyone interested in distant forests, it is important to go to there and take measurements or use data (as presented here).
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Bernhard Diekmann, Werner Stackebrandt, Roland Weiße, Margot Böse, Udo Rothe, Boris Biskaborn, and Achim Brauer
DEUQUA Spec. Pub., 4, 5–17, https://doi.org/10.5194/deuquasp-4-5-2022, https://doi.org/10.5194/deuquasp-4-5-2022, 2022
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395, https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Short summary
Despite rapidly intensifying wildfire seasons in Siberian boreal forests, little is known about long-term relationships between changes in vegetation and shifts in wildfire activity. Using lake sediment proxies, we reconstruct such environmental changes over the past 10,800 years in Central Yakutia. We find that a more open forest may facilitate increased amounts of vegetation burning. The present-day dense larch forest might yet be mediating the current climate-driven wildfire intensification.
Gregor Pfalz, Bernhard Diekmann, Johann-Christoph Freytag, Liudmila Syrykh, Dmitry A. Subetto, and Boris K. Biskaborn
Geochronology, 4, 269–295, https://doi.org/10.5194/gchron-4-269-2022, https://doi.org/10.5194/gchron-4-269-2022, 2022
Short summary
Short summary
We use age–depth modeling systems to understand the relationship between age and depth in lake sediment cores. However, depending on which modeling system we use, the model results may vary. We provide a tool to link different modeling systems in an interactive computational environment and make their results comparable. We demonstrate the power of our tool by highlighting three case studies in which we test our application for single-sediment cores and a collection of multiple sediment cores.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Mareike Wieczorek and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, https://doi.org/10.5194/essd-12-3515-2020, 2020
Short summary
Short summary
Relative pollen productivity (RPP) estimates are used to estimate vegetation cover from pollen records. This study provides (i) a compilation of northern hemispheric RPP studies, allowing researchers to identify suitable sets for their study region and to identify data gaps for future research, and (ii) taxonomically harmonized, unified RPP sets for China, Europe, North America, and the whole Northern Hemisphere, generated from the available studies.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Heike H. Zimmermann, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Juliane Müller, Ruediger Stein, Ralf Tiedemann, and Ulrike Herzschuh
Ocean Sci., 16, 1017–1032, https://doi.org/10.5194/os-16-1017-2020, https://doi.org/10.5194/os-16-1017-2020, 2020
Short summary
Short summary
This study targets high-resolution, diatom-specific sedimentary ancient DNA using a DNA metabarcoding approach. Diatom DNA has been preserved with substantial taxonomic richness in the eastern Fram Strait over the past 30 000 years with taxonomic composition being dominated by cold-water and sea-ice-associated diatoms. Taxonomic reorganisations took place after the Last Glacial Maximum and after the Younger Dryas. Peak proportions of pennate diatoms might indicate past sea-ice presence.
Cited articles
Aakala, T., Pasanen, L., Helama, S., Vakkari, V., Drobyshev, I., Seppä,
H., Kuuluvainen, T., Stivrins, N., Wallenius, T., Vasander, H., and
Holmström, L.: Multiscale variation in drought controlled historical
forest fire activity in the boreal forests of eastern Fennoscandia, Ecol.
Monogr., 88, 74–91, https://doi.org/10.1002/ecm.1276, 2018.
Administrative Center Lensk: Lensky District Map, available at:
https://mr-lenskij.sakha.gov.ru/o-rajone/karta-lenskogo-rajona (last access:
21 October 2020), 2015
Alexander, H. D., Mack, M. C., Goetz, S., Beck, P. S. A., and Belshe, E. F.:
Implications of increased deciduous cover on stand structure and aboveground
carbon pools of Alaskan boreal forests, Ecosphere, 3, 1–21,
https://doi.org/10.1890/ES11-00364.1, 2012.
Andreev, A. A., Morozova, E., Fedorov, G., Schirrmeister, L., Bobrov, A. A.,
Kienast, F., and Schwamborn, G.: Vegetation history of central Chukotka
deduced from permafrost paleoenvironmental records of the El'gygytgyn Impact
Crater, Clim. Past, 8, 1287–1300,
https://doi.org/10.5194/cp-8-1287-2012, 2012.
Andreev, A. A., Tarasov, P. E., Wennrich, V., and Melles, M.:
Millennial-scale vegetation history of the north-eastern Russian Arctic
during the mid-Pliocene inferred from the Lake El'gygytgyn pollen record,
Glob. Planet. Change, 186, 103111,
https://doi.org/10.1016/j.gloplacha.2019.103111, 2020.
Angelstam, P. and Kuuluvainen, T.: Boreal Forest Disturbance Regimes,
Successional Dynamics and Landscape Structures: A European Perspective,
Ecol. Bull., 51, 117–136,
2004.
Appleby, P. G., Nolan, P. J., Gifford, D. W., Godfrey, M. J., Oldfield, F.,
Anderson, N. J., and Battarbee, R. W.: 210Pb dating by low background
gamma counting, Hydrobiologia, 143, 21–27, https://doi.org/10.1007/BF00026640, 1986.
Balzter, H., Gerard, F. F., George, C. T., Rowland, C. S., Jupp, T. E.,
McCallum, I., Shvidenko, A., Nilsson, S., Sukhinin, A., Onuchin, A., and
Schmullius, C.: Impact of the Arctic Oscillation pattern on interannual
forest fire variability in Central Siberia, Geophys. Res. Lett., 32,
1–4, https://doi.org/10.1029/2005GL022526, 2005.
Barhoumi, C., Peyron, O., Joannin, S., Subetto, D., Kryshen, A., Drobyshev,
I., Girardin, M. P., Brossier, B., Paradis, L., Pastor, T., Alleaume, S., and
Ali, A. A.: Gradually increasing forest fire activity during the Holocene in
the northern Ural region (Komi Republic, Russia), The Holocene, 29,
1906–1920, https://doi.org/10.1177/0959683619865593, 2019.
Barhoumi, C., Ali, A. A., Peyron, O., Dugerdil, L., Borisova, O., Golubeva,
Y., Subetto, D., Kryshen, A., Drobyshev, I., Ryzhkova, N., and Joannin, S.:
Did long-term fire control the coniferous boreal forest composition of the
northern Ural region (Komi Republic, Russia)?, J. Biogeogr., 1–16,
https://doi.org/10.1111/jbi.13922, 2020.
Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D.: mixtools: An R
Package for analyzing finite mixture models, J. Stat. Softw., 32, 1–29, 2009.
Birks, H. H.: The importance of plant macrofossils in the reconstruction of
Lateglacial vegetation and climate: examples from Scotland, western Norway,
and Minnesota, USA, Quaternary Sci. Rev., 22, 453–473,
https://doi.org/10.1016/S0277-3791(02)00248-2, 2003.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., and
Diekmann, B.: Environmental variability in northeastern Siberia during the
last ∼ 13,300 yr inferred from lake diatoms and
sediment–geochemical parameters, Palaeogeogr. Palaeocl.,
329/330, 22–36, https://doi.org/10.1016/j.palaeo.2012.02.003, 2012.
Biskaborn, B. K., Narancic, B., Stoof-Leichsenring, K. R., Pestryakova, L.
A., Appleby, P. G., Piliposian, G. T., and Diekmann, B.: Effects of climate
change and industrialization on Lake Bolshoe Toko, eastern Siberia, J.
Paleolimnol., 65, 335–352, https://doi.org/10.1007/s10933-021-00175-z, 2021.
Blaauw, M. and Christen, J. A.: 2011 Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/11-BA618, 2011
Blaauw, M., Christen, A., and Aquino L., M. A.: rbacon: Age-Depth Modelling
using Bayesian Statistics. R package version 2.4.3, available at:
https://CRAN.R-project.org/package=rbacon, last access: 21 October
2020
Blarquez, O., Girardin, M. P., Leys, B., Ali, A. A., Aleman, J. C.,
Bergeron, Y., and Carcaillet, C.: Paleofire reconstruction based on an
ensemble-member strategy applied to sedimentary charcoal, Geophys. Res.
Lett., 40, 2667–2672, https://doi.org/10.1002/grl.50504, 2013.
Blarquez, O., Vannière, B., Marlon, J. R., Daniau, A.-L., Power, M. J.,
Brewer, S., and Bartlein, P. J.: paleofire: An R package to analyse
sedimentary charcoal records from the Global Charcoal Database to
reconstruct past biomass burning, Comput. Geosci., 72, 255–261,
https://doi.org/10.1016/j.cageo.2014.07.020, 2014.
Bouchard, F., MacDonald, L. A., Turner, K. W., Thienpont, J. R., Medeiros,
A. S., Biskaborn, B. K., Korosi, J., Hall, R. I., Pienitz, R., and Wolfe, B.
B.: Paleolimnology of thermokarst lakes: a window into permafrost landscape
evolution, Arct. Sci., 3, 91–117, https://doi.org/10.1139/as-2016-0022,
2016.
Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A.,
D'Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M.
A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A.
C., Sodhi, N. S., and Swetnam, T. W.: The human dimension of fire regimes on
Earth, J. Biogeogr., 38, 2223–2236,
https://doi.org/10.1111/j.1365-2699.2011.02595.x, 2011.
Brown, K. J. and Giesecke, T.: Holocene fire disturbance in the boreal
forest of central Sweden, Boreas, 43, 639–651,
https://doi.org/10.1111/bor.12056, 2014.
Brunelle, A. and Anderson, R. S.: Sedimentary charcoal as an indicator of
late-Holocene drought in the Sierra Nevada, California, and its relevance to
the future, The Holocene, 13, 21–28,
https://doi.org/10.1191/0959683603hl591rp, 2003.
Campbell, I. D.: Quaternary pollen taphonomy: examples of differential
redeposition and differential preservation, Palaeogeogr. Palaeocl., 149, 245–256,
https://doi.org/10.1016/S0031-0182(98)00204-1, 1999.
Carcaillet, C., Bergeron, Y., Richard, P. J. H., Fréchette, B.,
Gauthier, S., and Prairie, Y. T.: Change of fire frequency in the eastern
Canadian boreal forests during the Holocene: does vegetation composition or
climate trigger the fire regime?, J. Ecol., 89, 930–946,
https://doi.org/10.1111/j.1365-2745.2001.00614.x, 2001.
Chelnokova, S. M., Chikina, I. D., and Radchenko, S. A.: Geologic map of
Yakutia P-48,49, 1: 000 000, VSEGEI, Leningrad, available at:
http://www.geokniga.org/sites/geokniga/ (last access: 21 October 2020),1988
Churakova Sidorova, O. V., Corona, C., Fonti, M. V., Guillet, S., Saurer,
M., Siegwolf, R. T. W., Stoffel, M., and Vaganov, E. A.: Recent atmospheric
drying in Siberia is not unprecedented over the last 1,500 years, Sci. Rep.,
10, 15024, https://doi.org/10.1038/s41598-020-71656-w, 2020.
Clark, J. S.: Particle motion and the theory of charcoal analysis: Source
area, transport, deposition, and sampling, Quateranry Res., 30, 67–80,
https://doi.org/10.1016/0033-5894(88)90088-9, 1988.
Clark, J. S., Lynch, J., Stocks, B. J., and Goldammer, J. G.: Relationships
between charcoal particles in air and sediments in west-central Siberia, The
Holocene, 8, 19–29, https://doi.org/10.1191/095968398672501165, 1998.
Colman, S. M., Jones, G. A., Rubin, M., King, J. W., Peck, J. A., and Orem,
W. H.: AMS radiocarbon analyses from Lake Baikal, Siberia: Challenges of
dating sediments from a large oligotrophic lake, Quaternary Sci. Rev., 15,
669–684, https://doi.org/10.1016/0277-3791(96)00027-3, 1996.
Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., and Krebs,
P.: Reconstructing past fire regimes: methods, applications, and relevance
to fire management and conservation, Quaternary Sci. Rev., 28, 555–576,
https://doi.org/10.1016/j.quascirev.2008.11.005, 2009.
Crubézy, E., Amory, S., Keyser, C., Bouakaze, C., Bodner, M., Gibert,
M., Röck, A., Parson, W., Alexeev, A., and Ludes, B.: Human evolution in
Siberia: from frozen bodies to ancient DNA, BMC Evol. Biol., 10, 1–16,
https://doi.org/10.1186/1471-2148-10-25, 2010.
de Groot, W. J., Cantin, A. S., Flannigan, M. D., Soja, A. J., Gowman, L. M.,
and Newbery, A.: A comparison of Canadian and Russian boreal forest fire
regimes, Forest Ecol. Manag., 294, 23–34,
https://doi.org/10.1016/j.foreco.2012.07.033, 2013.
Dietze, E., Theuerkauf, M., Bloom, K., Brauer, A., Dörfler, W., Feeser,
I., Feurdean, A., Gedminienė, L., Giesecke, T., Jahns, S.,
Karpińska-Kołaczek, M., Kołaczek, P., Lamentowicz, M., Latałowa,
M., Marcisz, K., Obremska, M., Pędziszewska, A., Poska, A., Rehfeld, K.,
Stančikaitė, M., Stivrins, N., Święta-Musznicka, J., Szal,
M., Vassiljev, J., Veski, S., Wacnik, A., Weisbrodt, D., Wiethold, J.,
Vannière, B., and Słowiński, M.: Holocene fire activity during
low-natural flammability periods reveals scale-dependent cultural human-fire
relationships in Europe, Quaternary Sci. Rev., 201, 44–56,
https://doi.org/10.1016/j.quascirev.2018.10.005, 2018.
Dietze, E., Brykała, D., Schreuder, L. T., Jażdżewski, K.,
Blarquez, O., Brauer, A., Dietze, M., Obremska, M., Ott, F.,
Pieńczewska, A., Schouten, S., Hopmans, E. C., and Słowiński, M.:
Human-induced fire regime shifts during 19th century industrialization: A
robust fire regime reconstruction using northern Polish lake sediments, PLOS
ONE, 14, 1–20, https://doi.org/10.1371/journal.pone.0222011, 2019.
Dietze, E., Mangelsdorf, K., Andreev, A., Karger, C., Schreuder, L. T.,
Hopmans, E. C., Rach, O., Sachse, D., Wennrich, V., and Herzschuh, U.:
Relationships between low-temperature fires, climate and vegetation during
three late glacials and interglacials of the last 430 kyr in northeastern
Siberia reconstructed from monosaccharide anhydrides in Lake El'gygytgyn
sediments, Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020,
2020.
Drobyshev, I., Niklasson, M., Angelstam, P., and Majewski, P.: Testing for
anthropogenic influence on fire regime for a 600-year period in the Jaksha
area, Komi Republic, East European Russia, Can. J. Forest Res., 34,
2027–2036, https://doi.org/10.1139/X04-081, 2004.
Duffin, K. I., Gillson, L., and Willis, K. J.: Testing the sensitivity of
charcoal as an indicator of fire events in savanna environments:
quantitative predictions of fire proximity, area and intensity, The
Holocene, 18, 279–291, https://doi.org/10.1177/0959683607086766, 2008.
Edwards, M. E., Anderson, P. M., Brubaker, L. B., Ager, T. A., Andreev, A.
A., Bigelow, N. H., Cwynar, L. C., Eisner, W. R., Harrison, S. P., Hu,
F.-S., Jolly, D., Lozhkin, A. V., MacDonald, G. M., Mock, C. J., Ritchie, J.
C., Sher, A. V., Spear, R. W., Williams, J. W., and Yu, G.: Pollen-based
biomes for Beringia 18,000, 6000 and 0 14C yr BP, J. Biogeogr., 27,
521–554, https://doi.org/10.1046/j.1365-2699.2000.00426.x, 2000.
Ehlers, J. and Gibbard, P. L.: The extent and chronology of Cenozoic Global
Glaciation, Quaternary Int., 164/165, 6–20,
https://doi.org/10.1016/j.quaint.2006.10.008, 2007.
Enache, M. D. and Cumming, B. F.: Charcoal morphotypes in lake sediments
from British Columbia (Canada): an assessment of their utility for the
reconstruction of past fire and precipitation, J. Paleolimnol., 38,
347–363, https://doi.org/10.1007/s10933-006-9084-8, 2007.
Fægri, K., Iversen, J., Kaland, P. E., and Krzywinski, K.: Textbook of
pollen analysis, Edn. 4th, John Wiley & Sons Ltd., Chichester, UK, 1989.
Fedorov, A. N., Vasilyev, N. F., Torgovkin, Y. I., Shestakova, A. A.,
Varlamov, S. P., Zheleznyak, M. N., Shepelev, V. V., Konstantinov, P. Y.,
Kalinicheva, S. S., Basharin, N. I., Makarov, V. S., Ugarov, I. S., Efremov,
P. V., Argunov, R. N., Egorova, L. S., Samsonova, V. V., Shepelev, A. G.,
Vasiliev, A. I., Ivanova, R. N., Galanin, A. A., Lytkin, V. M., Kuzmin, G.
P., and Kunitsky, V. V.: Permafrost-Landscape Map of the Republic of Sakha
(Yakutia) on a Scale 1:1 500 000, Geosciences, 8, 1–17,
https://doi.org/10.3390/geosciences8120465, 2018.
Fedorova, S. A., Reidla, M., Metspalu, E., Metspalu, M., Rootsi, S.,
Tambets, K., Trofimova, N., Zhadanov, S. I., Kashani, B. H., Olivieri, A.,
Voevoda, M. I., Osipova, L. P., Platonov, F. A., Tomsky, M. I.,
Khusnutdinova, E. K., Torroni, A., and Villems, R.: Autosomal and uniparental
portraits of the native populations of Sakha (Yakutia): implications for the
peopling of Northeast Eurasia, BMC Evol. Biol., 13, 1–18,
https://doi.org/10.1186/1471-2148-13-127, 2013.
Feurdean, A., Veski, S., Florescu, G., Vannière, B., Pfeiffer, M.,
O'Hara, R. B., Stivrins, N., Amon, L., Heinsalu, A., Vassiljev, J., and
Hickler, T.: Broadleaf deciduous forest counterbalanced the direct effect of
climate on Holocene fire regime in hemiboreal/boreal region (NE Europe),
Quaternary Sci. Rev., 169, 378–390,
https://doi.org/10.1016/j.quascirev.2017.05.024, 2017.
Feurdean, A., Gałka, M., Florescu, G., Diaconu, A.-C., Tanţău, I.,
Kirpotin, S., and Hutchinson, S. M.: 2000 years of variability in
hydroclimate and carbon accumulation in western Siberia and the relationship
with large-scale atmospheric circulation: A multi-proxy peat record, Quaternary Sci. Rev., 226, 105948, https://doi.org/10.1016/j.quascirev.2019.105948,
2019.
Feurdean, A., Florescu, G., Tanţău, I., Vannière, B., Diaconu,
A.-C., Pfeiffer, M., Warren, D., Hutchinson, S. M., Gorina, N., Gałka, M.,
and Kirpotin, S.: Recent fire regime in the southern boreal forests of
western Siberia is unprecedented in the last five millennia, Quaternary Sci.
Rev., 244, 1–16, https://doi.org/10.1016/j.quascirev.2020.106495, 2020.
Fiedel, S. J. and Kuzmin, Y. V.: Radiocarbon date frequency as an index of
intensity of paleolithic occupation of Siberia: did humans react predictably
to climate oscillations?, Radiocarbon, 49, 741–756,
https://doi.org/10.1017/S0033822200042624, 2007.
Flannigan, M., Stocks, B., Turetsky, M., and Wotton, M.: Impacts of climate
change on fire activity and fire management in the circumboreal forest,
Glob. Change Biol., 15, 549–560,
https://doi.org/10.1111/j.1365-2486.2008.01660.x, 2009.
Frégeau, M., Payette, S., and Grondin, P.: Fire history of the central
boreal forest in eastern North America reveals stability since the
mid-Holocene, The Holocene, 25, 1912–1922,
https://doi.org/10.1177/0959683615591361, 2015.
Gaglioti, B. V., Mann, D. H., Jones, B. M., Pohlman, J. W., Kunz, M. L., and
Wooller, M. J.: Radiocarbon age-offsets in an arctic lake reveal the
long-term response of permafrost carbon to climate change, J. Geophys. Res.-Biogeo., 119, 1630–1651, https://doi.org/10.1002/2014JG002688,
2014.
Gavin, D. G., Hu, F. S., Lertzman, K., and Corbett, P.: Weak climatic control
of stand-scale fire history during the Late Holocene, Ecology, 87,
1722–1732, https://doi.org/10.1890/0012-9658(2006)87[1722:WCCOSF]2.0.CO;2,
2006.
Gavin, D. G., Hallett, D. J., Hu, F. S., Lertzman, K. P., Prichard, S. J.,
Brown, K. J., Lynch, J. A., Bartlein, P., and Peterson, D. L.: Forest fire
and climate change in western North America: insights from sediment charcoal
records, Front. Ecol. Environ., 5, 499–506,
https://doi.org/10.1890/060161, 2007.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.:
The Collection 6 MODIS burned area mapping algorithm and product, Remote Sens.
Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018.
Glückler, R. and Dietze, E.: CharcoalFireReconstruction in R (Version
1.0), Zenodo [Dataset], https://doi.org/10.5281/zenodo.4943274, 2021.
Glückler, R., Herzschuh, U., Vyse, S. A., and Dietze, E.: Macroscopic
charcoal record from Lake Khamra, Yakutia, Russia, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.923773, 2020.
Goldammer, J. G. and Furyaev, V. V.: Fire in Ecosystems of Boreal Eurasia:
Ecological Impacts and Links to the Global System, in: Fire in Ecosystems of
Boreal Eurasia, edited by: Goldammer, J. G. and Furyaev, V. V.,
Springer Netherlands, Dordrecht, 1–20, 1996.
Grieman, M. M., Aydin, M., Fritzsche, D., McConnell, J. R., Opel, T., Sigl,
M., and Saltzman, E. S.: Aromatic acids in a Eurasian Arctic ice core: a
2600-year proxy record of biomass burning, Clim. Past, 16, 395–410,
https://doi.org/10.5194/cp-13-395-2017, 2017.
Grosse, G., Jones, B., and Arp, C.: 8.21 Thermokarst Lakes, Drainage, and
Drained Basins, in: Treatise on Geomorphology, edited by: Shroder, J. F.,
Academic Press, San Diego, 325–353, 2013.
Guiot, J., Corona, C., and ESCARSEL members: Growing season temperatures in
Europe and Climate forcings over the past 1400 years, PLOS ONE, 5, 1–15,
https://doi.org/10.1371/journal.pone.0009972, 2010.
Hajdas, I., Zolitschka, B., Bonani, G., Leroy, S. A. G., Negendank, J. W.,
Ramratht, M., and Suter, M.: AMS radiocarbon dating of annually laminated
sediments from lake Holzmaar, Germany, Quaternary Sci. Rev., 14, 137–143, 1995.
Halsall, K. M., Ellingsen, V. M., Asplund, J., Bradshaw, R. H., and Ohlson,
M.: Fossil charcoal quantification using manual and image analysis
approaches, The Holocene, 28, 1345–1353,
https://doi.org/10.1177/0959683618771488, 2018.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R.,
Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R.
G.: High-resolution global maps of 21st-century forest cover change,
Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Hawthorne, D., Courtney Mustaphi, C. J., Aleman, J. C., Blarquez, O.,
Colombaroli, D., Daniau, A.-L., Marlon, J. R., Power, M., Vannière, B.,
Han, Y., Hantson, S., Kehrwald, N., Magi, B., Yue, X., Carcaillet, C.,
Marchant, R., Ogunkoya, A., Githumbi, E. N., and Muriuki, R. M.: Global
Modern Charcoal Dataset (GMCD): A tool for exploring proxy-fire linkages and
spatial patterns of biomass burning, Quaternary Int., 488, 3–17,
https://doi.org/10.1016/j.quaint.2017.03.046, 2018.
Hély, C., Girardin, M. P., Ali, A. A., Carcaillet, C., Brewer, S., and
Bergeron, Y.: Eastern boreal North American wildfire risk of the past 7000
years: A model-data comparison, Geophys. Res. Lett., 37, 1–6,
https://doi.org/10.1029/2010GL043706, 2010.
Herzschuh, U.: Legacy of the Last Glacial on the present-day distribution of
deciduous versus evergreen boreal forests, Glob. Ecol. Biogeogr., 29,
198–206, https://doi.org/10.1111/geb.13018, 2020.
Herzschuh, U., Birks, H. J. B., Laepple, T., Andreev, A., Melles, M., and
Brigham-Grette, J.: Glacial legacies on interglacial vegetation at the
Pliocene-Pleistocene transition in NE Asia, Nat. Commun., 7, 1–11,
https://doi.org/10.1038/ncomms11967, 2016.
Higuera, P. E., Peters, M. E., Brubaker, L. B., and Gavin, D. G.:
Understanding the origin and analysis of sediment-charcoal records with a
simulation model, Quaternary Sci. Rev., 26, 1790–1809,
https://doi.org/10.1016/j.quascirev.2007.03.010, 2007.
Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S., and Brown, T.
A.: Vegetation mediated the impacts of postglacial climate change on fire
regimes in the south-central Brooks Range, Alaska, Ecol. Monogr., 79,
201–219, https://doi.org/10.1890/07-2019.1, 2009.
Higuera, P. E., Gavin, D. G., Bartlein, P. J., and Hallett, D. J.: Peak
detection in sediment–charcoal records: impacts of alternative data
analysis methods on fire-history interpretations, Int. J. Wildland Fire,
19, 996–1014, https://doi.org/10.1071/WF09134, 2011.
Hoecker, T. J., Higuera, P. E., Kelly, R., and Hu, F. S.: Arctic and boreal
paleofire records reveal drivers of fire activity and departures from
Holocene variability, Ecology, 101, 1–17,
https://doi.org/10.1002/ecy.3096, 2020.
Hudspith, V. A., Belcher, C. M., Kelly, R., and Hu, F. S.: Charcoal
reflectance reveals early Holocene boreal deciduous forests burned at high
intensities, PLOS ONE, 10, e0120835,
https://doi.org/10.1371/journal.pone.0120835, 2015.
International Paleofire Network: Global Paleofire Database, available at: https://ipn.paleofire.org/, last access: 12 July 2021.
Ito, A.: Modelling of carbon cycle and fire regime in an east Siberian larch
forest, Ecol. Model., 187, 121–139,
https://doi.org/10.1016/j.ecolmodel.2005.01.037, 2005.
Isaev, A. P., Protopopov, A. V., Protopopova, V. V., Egorova, A. A.,
Timofeyev, P. A., Nikolaev, A. N., Shurduk, I. F., Lytkina, L. P., Ermakov,
N. B., Nikitina, N. V., E?mova, A. P., Zakharova, V. I., Cherosov, M. M.,
Nikolin, E. G., Sosina, N. K., Troeva, E. I., Gogoleva, P. A., Kuznetsova,
L. V., Pestryakov, B. N., Mironova, S. I., and Sleptsova, N. P.: Vegetation
of Yakutia: Elements of Ecology and Plant Sociology, in: The Far North: Plant
Biodiversity and Ecology of Yakutia, edited by: Troeva, E. I., Isaev, A. P., Cherosov, M. M., and Karpov, N. S., Springer
Science+Business Media B.V., 143–260,
https://doi.org/10.1007/978-90-481-3774-9_3, 2010
Ivanova, A. A., Kopylova-Guskova, E. O., Shipunov, A. B., and Volkova, P. A.:
Post-fire succession in the northern pine forest in Russia: a case study,
Wulfenia, 21, 119–128, 2014.
Ivanova, G. A.: The extreme fire season in the central taiga forests of
Yakutia, in: Fire in Ecosystems of Boreal Eurasia, edited by: Goldammer, J. G.
and Furyaev, V. V., Springer Netherlands, Dordrecht, 260–270, 1996.
Jansen, E., Christensen, J. H., Dokken, T., Nisancioglu, K. H., Vinther, B.
M., Capron, E., Guo, C., Jensen, M. F., Langen, P. L., Pedersen, R. A.,
Yang, S., Bentsen, M., Kjær, H. A., Sadatzki, H., Sessford, E., and
Stendel, M.: Past perspectives on the present era of abrupt Arctic climate
change, Nat. Clim. Change, 10, 714–721,
https://doi.org/10.1038/s41558-020-0860-7, 2020.
Jensen, K., Lynch, E. A., Calcote, R., and Hotchkiss, S. C.: Interpretation
of charcoal morphotypes in sediments from Ferry Lake, Wisconsin, USA: do
different plant fuel sources produce distinctive charcoal morphotypes?, The
Holocene, 17, 907–915, https://doi.org/10.1177/0959683607082405, 2007.
Katamura, F., Fukuda, M., Bosikov, N. P., and Desyatkin, R. V.: Charcoal
records from thermokarst deposits in central Yakutia, eastern Siberia:
Implications for forest fire history and thermokarst development, Quaternary
Res., 71, 36–40, https://doi.org/10.1016/j.yqres.2008.08.003, 2009a.
Katamura, F., Fukuda, M., Bosikov, N. P., and Desyatkin, R. V.: Forest fires
and vegetation during the Holocene in central Yakutia, eastern Siberia, J.
For. Res., 14, 30–36, https://doi.org/10.1007/s10310-008-0099-z, 2009b.
Keaveney, E. M. and Reimer, P. J.: Understanding the variability in
freshwater radiocarbon reservoir offsets: a cautionary tale, J. Archaeol.
Sci., 39, 1306–1316, https://doi.org/10.1016/j.jas.2011.12.025, 2012.
Kelly, R. F., Higuera, P. E., Barrett, C. M., and Hu, F. S.: A
signal-to-noise index to quantify the potential for peak detection in
sediment–charcoal records, Quaternary Res., 75, 11–17,
https://doi.org/10.1016/j.yqres.2010.07.011, 2011.
Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B.,
and Hu, F. S.: Recent burning of boreal forests exceeds fire regime limits
of the past 10,000 years, P. Natl. Acad. Sci. USA, 110, 13055–13060,
https://doi.org/10.1073/pnas.1305069110, 2013.
Kelly, R., Genet, H., McGuire, A. D., and Hu, F. S.: Palaeodata-informed
modelling of large carbon losses from recent burning of boreal forests, Nat.
Clim. Change, 6, 79–82, https://doi.org/10.1038/nclimate2832, 2016.
Keyser, C., Hollard, C., Gonzalez, A., Fausser, J.-L., Rivals, E., Alexeev,
A. N., Riberon, A., Crubézy, E., and Ludes, B.: The ancient Yakuts: a
population genetic enigma, Philos. T. R. Soc., 370, 20130385,
https://doi.org/10.1098/rstb.2013.0385, 2015.
Kharuk, V. I., Ranson, K. J., and Dvinskaya, M. L.: Wildfires dynamic in the
larch dominance zone, Geophys. Res. Lett., 35, L01402,
https://doi.org/10.1029/2007GL032291, 2008.
Kharuk, V. I., Im, S. T., Dvinskaya, M. L., and Ranson, K. J.:
Climate-induced mountain tree-line evolution in southern Siberia, Scand. J.
Forest Res., 25, 446–454, https://doi.org/10.1080/02827581.2010.509329,
2010.
Kharuk, V. I., Ranson, K. J., Dvinskaya, M. L., and Im, S. T.: Wildfires in
northern Siberian larch dominated communities, Environ. Res. Lett., 6,
045208, https://doi.org/10.1088/1748-9326/6/4/045208, 2011.
Kharuk, V. I., Dvinskaya, M. L., Petrov, I. A., Im, S. T., and Ranson, K. J.:
Larch forests of Middle Siberia: long-term trends in fire return intervals,
Reg. Environ. Change, 16, 2389–2397,
https://doi.org/10.1007/s10113-016-0964-9, 2016.
Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H., and Schaepman-Strub, G.:
Extensive fires in southeastern Siberian permafrost linked to preceding
Arctic Oscillation, Sci. Adv., 6, eaax3308,
https://doi.org/10.1126/sciadv.aax3308, 2020.
Kisilyakov, Y.: Prescribed Fire Experiments in Krasnoyarsk Region, Russia,
IFFN, 38, 51–62, 2009
Konakov, N. D.: Agriculture. In Traditional culture of European North-East
of Russia, available at: http://www.komi.com/Folk/komi/txt84.htm (last access
21 October 2020), 1999.
Köster, E., Köster, K., Berninger, F., Prokushkin, A., Aaltonen, H.,
Zhou, X., and Pumpanen, J.: Changes in fluxes of carbon dioxide and methane
caused by fire in Siberian boreal forest with continuous permafrost, J.
Environ. Manage., 228, 405–415,
https://doi.org/10.1016/j.jenvman.2018.09.051, 2018.
Kozubov, G. M. and Taskaev, A. I.: Forestry and forest resources of Komi
republic, DiK Publishing House, Moscow, 1999
Kruse, S., Bolshiyanov, D., Grigoriev, M. N., Morgenstern, A., Pestryakova,
L., Tsibizov, L., and Udke, A.: Russian-German Cooperation: Expeditions to
Siberia in 2018, Rep. Polar Mar. Res., 734, 1–257,
https://doi.org/10.2312/BzPM_0734_2019, 2019.
Kuuluvainen, T. and Gauthier, S.: Young and old forest in the boreal:
critical stages of ecosystem dynamics and management under global change,
For. Ecosyst., 5, 1–15, https://doi.org/10.1186/s40663-018-0142-2, 2018.
Lenton, T. M.: Arctic climate tipping points, Ambio, 41, 10–22,
https://doi.org/10.1007/s13280-011-0221-x, 2012.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S.,
and Schellnhuber, H. J.: Tipping elements in the Earth's climate system,
P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008.
Leys, B., Brewer, S. C., McConaghy, S., Mueller, J., and McLauchlan, K. K.:
Fire history reconstruction in grassland ecosystems: amount of charcoal
reflects local area burned, Environ. Res. Lett., 10, 114009,
https://doi.org/10.1088/1748-9326/10/11/114009, 2015.
Loader, C.: locfit: Local Regression, Likelihood and Density Estimation. R
package version 1.5-9.4, available at:
https://CRAN.R-project.org/package=locfit, last access: 21 October
2020.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K.,
Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global signatures and
dynamical origins of the Little Ice Age and Medieval Climate Anomaly,
Science, 326, 1256–1260, https://doi.org/10.1126/science.1177303,
2009.
Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison, S.
P., Higuera, P. E., Joos, F., Power, M. J., and Prentice, I. C.: Climate and
human influences on global biomass burning over the past two millennia, Nat.
Geosci., 1, 697–702, https://doi.org/10.1038/ngeo313, 2008.
Marlon, J. R., Bartlein, P. J., Daniau, A.-L., Harrison, S. P., Maezumi, S.
Y., Power, M. J., Tinner, W., and Vanniére, B.: Global biomass burning: a
synthesis and review of Holocene paleofire records and their controls, Quaternary Sci. Rev., 65, 5–25, https://doi.org/10.1016/j.quascirev.2012.11.029, 2013.
Marlon, J. R., Kelly, R., Daniau, A.-L., Vannière, B., Power, M. J.,
Bartlein, P., Higuera, P., Blarquez, O., Brewer, S., Brücher, T.,
Feurdean, A., Romera, G. G., Iglesias, V., Maezumi, S. Y., Magi, B.,
Mustaphi, C. J. C., and Zhihai, T.: Reconstructions of biomass burning from
sediment-charcoal records to improve data–model comparisons,
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016,
2016.
Matveev, P. M. and Usoltzev, V. A.: Post-fire mortality and regeneration of
Larix sibirica and Larix dahurica in conditions of long-term permafrost, in: Fire in Ecosystems of Boreal
Eurasia, edited by: Goldammer, J. G. and Furyaev, V. V., Springer
Netherlands, Dordrecht, 366–371, 1996.
McKay, N. P. and Kaufman, D. S.: An extended Arctic proxy temperature
database for the past 2,000 years, Sci. Data, 1, 140026,
https://doi.org/10.1038/sdata.2014.26, 2014.
Molinari, C., Carcaillet, C., Bradshaw, R. H. W., Hannon, G. E., and Lehsten,
V.: Fire-vegetation interactions during the last 11,000 years in boreal and
cold temperate forests of Fennoscandia, Quaternary Sci. Rev., 241, 106408,
https://doi.org/10.1016/j.quascirev.2020.106408, 2020.
Müller, S., Tarasov, P. E., Andreev, A. A., Tütken, T., Gartz, S.,
and Diekmann, B.: Late Quaternary vegetation and environments in the
Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil
pollen record from Lake Billyakh, Quaternary Sci. Rev., 29, 2071–2086,
https://doi.org/10.1016/j.quascirev.2010.04.024, 2010.
Mustaphi, C. J. C. and Pisaric, M. F. J.: A classification for macroscopic
charcoal morphologies found in Holocene lacustrine sediments, Prog. Phys.
Geogr. Earth Environ., 38, 734–754,
https://doi.org/10.1177/0309133314548886, 2014.
Nazarova, L., Lüpfert, H., Subetto, D., Pestryakova, L., and Diekmann,
B.: Holocene climate conditions in central Yakutia (Eastern Siberia)
inferred from sediment composition and fossil chironomids of Lake Temje,
Quaternary Int., 290/291, 264–274,
https://doi.org/10.1016/j.quaint.2012.11.006, 2013.
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J.
P.: No evidence for globally coherent warm and cold periods over the
preindustrial Common Era, Nature, 571, 550–554,
https://doi.org/10.1038/s41586-019-1401-2, 2019.
Nilsson, S. and Shvidenko, A.: Is sustainable development of the Russian
forest sector possible?, IUFRO, 11, Vienna, Austria, 1–60, 1996.
Ohlson, M. and Tryterud, E.: Interpretation of the charcoal record in forest
soils: forest fires and their production and deposition of macroscopic
charcoal, The Holocene, 10, 519–525,
https://doi.org/10.1191/095968300667442551, 2000.
Osborn, T. J. and Briffa, K. R.: The spatial extent of 20th-century warmth
in the context of the past 1200 years, Science, 311, 841–844,
https://doi.org/10.1126/science.1120514, 2006.
Pakendorf, B., Spitsyn, V. A., and Rodewald, A.: Genetic structure of a Sakha
population from Siberia and ethnic affinities, Hum. Biol., 71, 231–244,
1999.
Pakendorf, B., Novgorodov, I. N., Osakovskij, V. L., Danilova, A. P.,
Protodjakonov, A. P., and Stoneking, M.: Investigating the effects of
prehistoric migrations in Siberia: genetic variation and the origins of
Yakuts, Hum Genet, 20, 334–353, https://doi.org/10.1007/s00439-006-0213-2,
2006.
Pereboom, E. M., Vachula, R. S., Huang, Y., and Russell, J.: The morphology
of experimentally produced charcoal distinguishes fuel types in the Arctic
tundra, The Holocene, 30, 1091–1096,
https://doi.org/10.1177/0959683620908629, 2020.
Pestryakova, L. A., Herzschuh, U., Wetterich, S., and Ulrich, M.: Present-day
variability and Holocene dynamics of permafrost-affected lakes in central
Yakutia (Eastern Siberia) inferred from diatom records, Quaternary Sci. Rev., 51,
56–70, https://doi.org/10.1016/j.quascirev.2012.06.020, 2012.
Peters, M. E. and Higuera, P. E.: Quantifying the source area of macroscopic
charcoal with a particle dispersal model, Quaternary Res., 67, 304–310,
https://doi.org/10.1016/j.yqres.2006.10.004, 2007.
Philben, M., Kaiser, K., and Benner, R.: Biochemical evidence for minimal
vegetation change in peatlands of the West Siberian Lowland during the
Medieval Climate Anomaly and Little Ice Age, J. Geophys. Res.-Biogeo., 119, 808–825, https://doi.org/10.1002/2013JG002396,
2014.
Philippsen, B.: The freshwater reservoir effect in radiocarbon dating,
Herit. Sci., 1, 1–24, https://doi.org/10.1186/2050-7445-1-24, 2013.
Pisaric, M. F. J.: Long-distance transport of terrestrial plant material by
convection resulting from forest fires, J. Paleolimnol., 28, 349–354,
https://doi.org/10.1023/A:1021630017078, 2002.
Pitulko, V. V., Nikolsky, P. A., Girya, E. Y., Basilyan, A. E., Tumskoy, V.
E., Koulakov, S. A., Astakhov, S. N., Pavlova, E. Y., and Anisimov, M. A.:
The Yana RHS site: humans in the Arctic before the Last Glacial Maximum,
Science, 303, 52–56, https://doi.org/10.1126/science.1085219, 2004.
Ponomarev, E., Kharuk, V., and Ranson, K.: Wildfires Dynamics in Siberian
Larch Forests, Forests, 7, 125, https://doi.org/10.3390/f7060125, 2016.
Power, M. J., Marlon, J., Ortiz, N., Bartlein, P. J., Harrison, S. P.,
Mayle, F. E., Ballouche, A., Bradshaw, R. H. W., Carcaillet, C., Cordova,
C., Mooney, S., Moreno, P. I., Prentice, I. C., Thonicke, K., Tinner, W.,
Whitlock, C., Zhang, Y., Zhao, Y., Ali, A. A., Anderson, R. S., Beer, R.,
Behling, H., Briles, C., Brown, K. J., Brunelle, A., Bush, M., Camill, P.,
Chu, G. Q., Clark, J., Colombaroli, D., Connor, S., Finsinger, W., Foster,
D., Frechette, J., Hallett, D. J., Higuera, P., Hope, G., Horn, S., Inoue,
J., Kaltenrieder, P., Kennedy, L., Kong, Z. C., Larsen, C., Long, C. J.,
Lynch, J., Lynch, E. A., McGlone, M., Meeks, S., Mensing, S., Meyer, G.,
Minckley, T., Mohr, J., Nelson, D. M., New, J., Newnham, R., Noti, R.,
Oswald, W., Pierce, J., Richard, P. J. H., Rowe, C., Turney, C.,
Urrego-Sanchez, D. H., Umbanhowar, C., Vandergoes, M., Vanniere, B.,
Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J., and Zhang, J.
H.: Changes in ?re regimes since the Last Glacial Maximum: an assessment
based on a global synthesis and analysis of charcoal data, Clim Dynam, 30,
887–907, https://doi.org/10.1007/s00382-007-0334-x, 2008.
Power, M. J., Marlon, J. R., Bartlein, P. J., and Harrison, S. P.: Fire
history and the Global Charcoal Database: A new tool for hypothesis testing
and data exploration, Palaeogeogr. Palaeocl., 291,
52–59, https://doi.org/10.1016/j.palaeo.2009.09.014, 2010.
Pyne, S. J.: Wild hearth. A prolegomenon to the cultural fire history of
Northern Eurasia, in: Fire in Ecosystems of Boreal Eurasia, edited by:
Goldammer, J. G. and Furyaev, V. V., Springer Netherlands, Dordrecht, 21–44,
1996.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/, last access: 21 October 2020.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., Plicht, J. van der, Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon age
calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Remy, C. C., Fouquemberg, C., Asselin, H., Andrieux, B., Magnan, G.,
Brossier, B., Grondin, P., Bergeron, Y., Talon, B., Girardin, M. P.,
Blarquez, O., Bajolle, L., and Ali, A. A.: Guidelines for the use and
interpretation of palaeofire reconstructions based on various archives and
proxies, Quaternary Sci. Rev., 193, 312–322,
https://doi.org/10.1016/j.quascirev.2018.06.010, 2018.
Revelle, W.: psych: Procedures for Personality and Psychological Research,
Northwestern University, Evanston, Illinois, USA, available at:
https://CRAN.R-project.org/package=psych Version=2.0.7, last access: 21
October 2020.
Reza, M. S., Afroze, S., Bakar, M. S. A., Saidur, R., Aslfattahi, N.,
Taweekun, J., and Azad, A. K.: Biochar characterization of invasive
Pennisetum purpureum grass: effect of pyrolysis temperature, Biochar, 2,
239–251, https://doi.org/10.1007/s42773-020-00048-0, 2020.
Rogers, B. M., Soja, A. J., Goulden, M. L., and Randerson, J. T.: Influence
of tree species on continental differences in boreal fires and climate
feedbacks, Nat. Geosci., 8, 228–234, https://doi.org/10.1038/ngeo2352,
2015.
Russian Institute of Hydrometeorological Information: World Data Center,
available at: http://meteo.ru/english/climate/temp.php, last access: 21
October 2020.
Scheffer, M., Hirota, M., Holmgren, M., Nes, E. H. V., and Chapin, F. S.:
Thresholds for boreal biome transitions, P. Natl. Acad. Sci. USA, 109,
21384–21389, https://doi.org/10.1073/pnas.1219844110, 2012.
Schepaschenko, D. G., Shvidenko, A. Z., and Shalaev, V. S.: Biological
Productivity and Carbon Budget of Larch Forests of Northern-East Russia,
Moscow State Forest University, Moscow, 2008.
Séjourné, A., Costard, F., Fedorov, A., Gargani, J., Skorve, J.,
Massé, M., and Mège, D.: Evolution of the banks of thermokarst lakes
in Central Yakutia (Central Siberia) due to retrogressive thaw slump
activity controlled by insolation, Geomorphology, 241, 31–40,
https://doi.org/10.1016/j.geomorph.2015.03.033, 2015.
Sofronov, M. A. and Volokitina, A. V.: Wildfire ecology in continuous
permafrost zone, in: Permafrost Ecosystems: Siberian Larch Forests, edited
by: Osawa, A., Zyryanova, O. A., Matsuura, Y., Kajimoto, T., and Wein, R. W.,
https://doi.org/10.1007/978-1-4020-9693-8_4, Springer
Science+Business Media B.V., Dordrecht, 59–82, 2010.
Sofronov, M. A., Volokitina, A. V., and Shvidenko, A. Z.: Wildland fires in
the north of Central Siberia, Commonw. Forest. Rev., 77, 211–218,
1998.
Stähli, M., Finsinger, W., Tinner, W., and Allgower, B.: Wildfire history
and fire ecology of the Swiss National Park (Central Alps): new evidence
from charcoal, pollen and plant macrofossils, The Holocene, 16, 805–817,
https://doi.org/10.1191/0959683606hol967rp, 2006.
Subetto, D. A., Nazarova, L. B., Pestryakova, L. A., Syrykh, L. S.,
Andronikov, A. V., Biskaborn, B., Diekmann, B., Kuznetsov, D. D., Sapelko,
T. V., and Grekov, I. M.: Paleolimnological studies in Russian northern
Eurasia: A review, Contemp. Probl. Ecol., 10, 327–335,
https://doi.org/10.1134/S1995425517040102, 2017.
Takahashi, K.: Future perspectives of forest management in a Siberian
permafrost area, in: Symptom of Environmental Change in Siberian Permafrost
Region, edited by: Hatano, R. and Guggenberger, G., Hokkaido University
Press, Sapporo, 163–170, 2006.
Tinner, W., Hofstetter, S., Zeugin, F., Conedera, M., Wohlgemuth, T.,
Zimmermann, L., and Zweifel, R.: Long-distance transport of macroscopic
charcoal by an intensive crown fire in the Swiss Alps – implications for
fire history reconstruction, The Holocene, 16, 287–292,
https://doi.org/10.1191/0959683606hl925rr, 2006.
Ulrich, M., Matthes, H., Schmidt, J., Fedorov, A. N., Schirrmeister, L.,
Siegert, C., Schneider, B., Strauss, J., and Zielhofer, C.: Holocene
thermokarst dynamics in Central Yakutia – A multi-core and robust
grain-size endmember modeling approach, Quaternary Sci. Rev., 218, 10–33,
https://doi.org/10.1016/j.quascirev.2019.06.010, 2019.
Vaganov, E. A. and Arbatskaya, M. K.: Climate history and wildfire frequency
in the central part of Krasnoyarsky Krai. Climatic conditions in growing
season and seasonal wildfires distribution, Siberian J. Ecol., 3, 9–18, 1996.
van den Boogaart, K. G., Tolosana-Delgado, R., and Bren, M.: compositions:
Compositional Data Analysis. R package version 2.0-0, available at:
https://CRAN.R-project.org/package=compositions, last access: 21 October
2020.
Vyse, S. A., Herzschuh, U., Andreev, A. A., Pestryakova, L. A., Diekmann,
B., Armitage, S. J., and Biskaborn, B. K.: Geochemical and sedimentological
responses of arctic glacial Lake Ilirney, Chukotka (Far East Russia) to
palaeoenvironmental change since ∼51.8 ka BP, Quaternary Sci. Rev., 247,
106607, https://doi.org/10.1016/j.quascirev.2020.106607, 2020.
Waito, J., Girardin, M. P., Tardif, J. C., Conciatori, F., Bergeron, Y., and
Ali, A. A.: Recent fire activity in the boreal eastern interior of North
America is below that of the past 2000 yr, Ecosphere, 9, e02287,
https://doi.org/10.1002/ecs2.2287, 2018.
Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C., Goetz,
S., Johnstone, J. F., Potter, S., Rogers, B. M., Schuur, E. A. G., Turetsky,
M. R., and Mack, M. C.: Increasing wildfires threaten historic carbon sink of
boreal forest soils, Nature, 572, 520–523,
https://doi.org/10.1038/s41586-019-1474-y, 2019.
Wallenius, T.: Major decline in fires in coniferous forests – Reconstructing
the phenomenon and seeking for the cause, Silva Fennica, 45, 139–155,
https://doi.org/10.14214/sf.36, 2011.
Wallenius, T., Larjavaara, M., Heikkinen, J., and Shibistova, O.: Declining
fires in Larix-dominated forests in northern Irkutsk district, Int. J. Wildland
Fire, 20, 248–254, https://doi.org/10.1071/WF10020, 2011.
Wang, S. and Hausfather, Z.: ESD Reviews: mechanisms, evidence, and impacts of climate tipping elements, Earth Syst. Dynam. Discuss. [preprint], https://doi.org/10.5194/esd-2020-16, 2020.
Ward, D. E. and Hardy, C. C.: Smoke emissions from wildland fires, Environ.
Int., 17, 117–134, 1991.
West, J. J. and Plug, L. J.: Time-dependent morphology of thaw lakes and
taliks in deep and shallow ground ice, J. Geophys. Res.-Earth, 113,
F01009, https://doi.org/10.1029/2006JF000696, 2008.
Whitlock, C. and Anderson, R. S.: Fire history reconstructions based on
sediment records from lakes and wetlands, in: Fire and Climatic Change in
Temperate Ecosystems of the Western Americas, edited by: Veblen, T. T.,
Baker, W. L., Montenegro, G., and Swetnam, T. W., Springer, New York, NY, 3–31,
2003.
Whitlock, C. and Larsen, C.: Charcoal as a fire proxy, in: Tracking
Environmental Change Using Lake Sediments, Vol. 3: Terrestrial, Algal, and
Siliceous Indicators, edited by: Smol, J. P., Birks, H. J. B., and Last, W. M.,
Springer Netherlands, Dordrecht, 75–97, 2001.
Wirth, C.: Fire regime and tree diversity in boreal forests: implications
for the carbon cycle, in: Forest Diversity and Function: Temperate and Boreal
Systems, edited by: Scherer-Lorenzen, M., Körner, C., and Schulze, E.-D.,
Springer, Berlin, Heidelberg, 309–344, 2005.
Wohlfarth, B., Skog, G., Possnert, G., and Holmquist, B.: Pitfalls in the AMS
radiocarbon-dating of terrestrial macrofossils, J. Quaternary Sci., 13,
137–145, 1998.
Woodward, C. and Haines, H. A.: Unprecedented long-distance transport of
macroscopic charcoal from a large, intense forest fire in eastern Australia:
Implications for fire history reconstruction, The Holocene, 30, 947–952,
https://doi.org/10.1177/0959683620908664, 2020.
Wu, B. and Wang, J.: Winter Arctic Oscillation, Siberian High and East Asian
Winter Monsoon, Geophys. Res. Lett., 29, 1897,
https://doi.org/10.1029/2002GL015373, 2002.
Zeileis, A. and Grothendieck, G.: zoo: S3 Infrastructure for Regular and
Irregular Time Series, J. Stat. Softw., 14, 1–27,
https://doi.org/10.18637/jss.v014.i06, 2005.
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Data about past fire activity are very sparse in Siberia. This study presents a first...
Altmetrics
Final-revised paper
Preprint