Articles | Volume 18, issue 16
https://doi.org/10.5194/bg-18-4791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene: combining hydroacoustic profiling and down-core analyses
Stuart A. Vyse
CORRESPONDING AUTHOR
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Research Unit Potsdam, Telegrafenberg A45, 14471 Potsdam, Germany
Institute of Environmental Science and Geography, University of
Potsdam, Potsdam, Germany
Ulrike Herzschuh
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Research Unit Potsdam, Telegrafenberg A45, 14471 Potsdam, Germany
Institute of Environmental Science and Geography, University of
Potsdam, Potsdam, Germany
Institute of Biochemistry and Biology, University of Potsdam, Potsdam,
Germany
Gregor Pfalz
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Research Unit Potsdam, Telegrafenberg A45, 14471 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Lyudmila A. Pestryakova
Northeastern Federal University of Yakutsk, Department for Geography and Biology, Yakutsk, Russia
Bernhard Diekmann
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Research Unit Potsdam, Telegrafenberg A45, 14471 Potsdam, Germany
Institute of Environmental Science and Geography, University of
Potsdam, Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Norbert Nowaczyk
Helmholtz Centre Potsdam GFZ, Climate Dynamics and Landscape
Evolution, Telegrafenberg, 14473 Potsdam, Germany
Boris K. Biskaborn
CORRESPONDING AUTHOR
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Research Unit Potsdam, Telegrafenberg A45, 14471 Potsdam, Germany
Related authors
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025, https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Short summary
Geochronological, cryolithological, paleoecological, and modeling data reconstruct the Last Interglacial (LIG) climate around the New Siberian Islands and reveal significantly warmer conditions compared to today. The critical challenges in predicting future ecosystem responses lie in the fact that the land–ocean distribution during the LIG was markedly different from today, affecting the degree of continentality, which played a major role in modulating climate and ecosystem dynamics.
Ulrike Herzschuh, Thomas Böhmer, Weihan Jia, and Simeon Lisovski
EGUsphere, https://doi.org/10.5194/egusphere-2025-2678, https://doi.org/10.5194/egusphere-2025-2678, 2025
Short summary
Short summary
We introduce a new climate proxy based on plant DNA preserved in lake sediments. Validated with a large surface sample dataset and applied to a sediment record, this method provides more accurate and robust reconstructions of past climate change than traditional vegetation proxies like pollen, likely due to a higher taxonomic resolution and more localized signal.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, Mareike Wieczorek, and Ulrike Herzschuh
Clim. Past, 21, 1001–1024, https://doi.org/10.5194/cp-21-1001-2025, https://doi.org/10.5194/cp-21-1001-2025, 2025
Short summary
Short summary
We present global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21 000 years, which are suitable for the evaluation of Earth-system-model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic and Tibetan Plateau areas during the Last Glacial Maximum and early deglaciation and in northern Africa and the Mediterranean region during the Holocene.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Andreas Marent, Jens Strauss, Dorothee Wilhelms-Dick, Luidmila A. Pestryakova, and Hanno Meyer
Biogeosciences, 22, 2327–2350, https://doi.org/10.5194/bg-22-2327-2025, https://doi.org/10.5194/bg-22-2327-2025, 2025
Short summary
Short summary
Globally, lake ecosystems have undergone significant shifts since the 1950s due to human activities. This study presents a unique ~220-year sediment record from a remote Siberian boreal lake, providing a multiproxy perspective on climate warming and anthropogenic air pollution. Analyses of diatom assemblages, diatom silicon isotopes, and carbon and nitrogen sediment proxies reveal complex biogeochemical interactions, highlighting anthropogenic influences even on remote water resources.
Laura Schild, Peter Ewald, Chenzhi Li, Raphaël Hébert, Thomas Laepple, and Ulrike Herzschuh
Earth Syst. Sci. Data, 17, 2007–2033, https://doi.org/10.5194/essd-17-2007-2025, https://doi.org/10.5194/essd-17-2007-2025, 2025
Short summary
Short summary
This study reconstructed vegetation and tree cover in the Northern Hemisphere from a harmonized dataset of pollen counts from sediment and peat cores for the past 14 000 years. A model was applied to correct for differences in pollen production between different plants, and modern remote-sensing forest cover was used to validate the reconstructed tree cover. Accurate data on past vegetation are invaluable for the investigation of vegetation–climate dynamics and the validation of vegetation models.
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data, 17, 1707–1730, https://doi.org/10.5194/essd-17-1707-2025, https://doi.org/10.5194/essd-17-1707-2025, 2025
Short summary
Short summary
The Lena Delta is the largest river delta in the Arctic and represents a biodiversity hotspot. Here, we describe multiple field datasets and a detailed habitat classification map for the Lena Delta. We present context and methods of these openly available datasets and show how they can improve our understanding of the rapidly changing Arctic tundra system.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Boris K. Biskaborn, Amy Forster, Gregor Pfalz, Lyudmila A. Pestryakova, Kathleen Stoof-Leichsenring, Jens Strauss, Tim Kröger, and Ulrike Herzschuh
Biogeosciences, 20, 1691–1712, https://doi.org/10.5194/bg-20-1691-2023, https://doi.org/10.5194/bg-20-1691-2023, 2023
Short summary
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022, https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
Short summary
We present data which were collected on expeditions to the northeast of the Russian Federation. One table describes the 226 locations we visited during those expeditions, and the other describes 40 289 trees which we recorded at these locations. We found out that important information on the forest cannot be predicted precisely from satellites. Thus, for anyone interested in distant forests, it is important to go to there and take measurements or use data (as presented here).
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Bernhard Diekmann, Werner Stackebrandt, Roland Weiße, Margot Böse, Udo Rothe, Boris Biskaborn, and Achim Brauer
DEUQUA Spec. Pub., 4, 5–17, https://doi.org/10.5194/deuquasp-4-5-2022, https://doi.org/10.5194/deuquasp-4-5-2022, 2022
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395, https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Short summary
Despite rapidly intensifying wildfire seasons in Siberian boreal forests, little is known about long-term relationships between changes in vegetation and shifts in wildfire activity. Using lake sediment proxies, we reconstruct such environmental changes over the past 10,800 years in Central Yakutia. We find that a more open forest may facilitate increased amounts of vegetation burning. The present-day dense larch forest might yet be mediating the current climate-driven wildfire intensification.
Gregor Pfalz, Bernhard Diekmann, Johann-Christoph Freytag, Liudmila Syrykh, Dmitry A. Subetto, and Boris K. Biskaborn
Geochronology, 4, 269–295, https://doi.org/10.5194/gchron-4-269-2022, https://doi.org/10.5194/gchron-4-269-2022, 2022
Short summary
Short summary
We use age–depth modeling systems to understand the relationship between age and depth in lake sediment cores. However, depending on which modeling system we use, the model results may vary. We provide a tool to link different modeling systems in an interactive computational environment and make their results comparable. We demonstrate the power of our tool by highlighting three case studies in which we test our application for single-sediment cores and a collection of multiple sediment cores.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Mareike Wieczorek and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, https://doi.org/10.5194/essd-12-3515-2020, 2020
Short summary
Short summary
Relative pollen productivity (RPP) estimates are used to estimate vegetation cover from pollen records. This study provides (i) a compilation of northern hemispheric RPP studies, allowing researchers to identify suitable sets for their study region and to identify data gaps for future research, and (ii) taxonomically harmonized, unified RPP sets for China, Europe, North America, and the whole Northern Hemisphere, generated from the available studies.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Arne Ramisch, Alexander Brauser, Mario Dorn, Cecile Blanchet, Brian Brademann, Matthias Köppl, Jens Mingram, Ina Neugebauer, Norbert Nowaczyk, Florian Ott, Sylvia Pinkerneil, Birgit Plessen, Markus J. Schwab, Rik Tjallingii, and Achim Brauer
Earth Syst. Sci. Data, 12, 2311–2332, https://doi.org/10.5194/essd-12-2311-2020, https://doi.org/10.5194/essd-12-2311-2020, 2020
Short summary
Short summary
Annually laminated lake sediments (varves) record past climate change at seasonal resolution. The VARved sediments DAtabase (VARDA) is created to utilize the full potential of varves for climate reconstructions. VARDA offers free access to a compilation and synchronization of standardized climate-proxy data, with applications ranging from reconstructing regional patterns of past climate change to validating simulations of climate models. VARDA is freely accessible at https://varve.gfz-potsdam.de
Heike H. Zimmermann, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Juliane Müller, Ruediger Stein, Ralf Tiedemann, and Ulrike Herzschuh
Ocean Sci., 16, 1017–1032, https://doi.org/10.5194/os-16-1017-2020, https://doi.org/10.5194/os-16-1017-2020, 2020
Short summary
Short summary
This study targets high-resolution, diatom-specific sedimentary ancient DNA using a DNA metabarcoding approach. Diatom DNA has been preserved with substantial taxonomic richness in the eastern Fram Strait over the past 30 000 years with taxonomic composition being dominated by cold-water and sea-ice-associated diatoms. Taxonomic reorganisations took place after the Last Glacial Maximum and after the Younger Dryas. Peak proportions of pennate diatoms might indicate past sea-ice presence.
Cited articles
Abbott, M. B. and Stafford Jr., T. W.: Radiocarbon Geochemistry of Modern
and Ancient Arctic Lake Systems, Baffin Island, Canada, Quaternary Res., 45,
300–311, https://doi.org/10.1006/qres.1996.0031, 1996.
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O.,
Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E.,
Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate
change, Limnol. Oceanogr., 54, 2283–2297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009.
Andersen, D. W., Wharton Jr., R. A., and Squyres, S. W.: Terrigenous clastic
sedimentation in Antarctic Dry Valley Lakes, Antarct Res. Ser., 59, 71–81, 1993.
Anderson, N. J., D'Andrea, W., and Fritz, S. C.: Holocene carbon burial by
lakes in SW Greenland, Glob. Change Biol., 15, 2590–2598, https://doi.org/10.1111/j.1365-2486.2009.01942.x, 2009.
Anderson, P. M. and Lozhkin, A. V.: Late quaternary vegetation of Chukotka
(northeast Russia) implications for glacial, and Holocene environments of
Beringia, Quaternary Sci. Rev., 107, 112-128, https://doi.org/10.1016/j.quascirev.2014.10.016, 2015.
Andreev, A. A., Raschke, E., Biskaborn, B. K., Vyse, S. V., Courtin, J.,
Böhmer, T., Stoof-Leichsenring, K., Kruse, S., Pestryakova, L. A.,
and Herzschuh, U. H.: Late Pleistocene to Holocene vegetation, and climate changes
in northwestern Chukotka (Far East Russia) deduced from lakes Ilirney, and Rauchuagytgyn pollen records, Boreas, 2021.
Anthony, K., Zimov, S., Grosse, G., Jones, M., Anthony, P., Chapin III, F., Finlay, J., Mack, M., Davydov, S., Frenzel P., and Frolking, S.: A shift of thermokarst lakes from
carbon sources to sinks during the Holocene epoch, Nature, 511, 452–456,
https://doi.org/10.1038/nature13560, 2014.
Arnaud, F., Révillon, S., Debret, M., Revel, M., Chapron, E., Jacob, J.,
Giguet-Covex, C., Poulenard, J., and Magny, M.: Lake Bourget regional erosion
patterns reconstruction reveals Holocene NW European Alps soil evolution, and paleohydrology, Quaternary Sci. Rev., 51, 81–92, https://doi.org/10.1016/j.quascirev.2012.07.025, 2012.
Asikainen, C. A., Francus, P., and Brigham-Grette, J.: Sedimentology, clay
mineralogy, and grain-size as indicators of 65 ka of climate change from
El'gygytgyn Crater Lake, Northeastern Siberia, J. Paleolimnol., 37, 105–122,
https://doi.org/10.1007/s10933-006-9026-5, 2007.
Avnimelech, Y., Ritvo, G., Meijer, L., and Kochba, M.: Water content, organic
carbon, and dry bulk density in flooded sediments, Aquac. Eng., 25, 25–33,
2001.
Bakke, J., Lie, øyvind, Nesje, A., Dahl, S. O., and Paasche, Ø.: Utilizing
physical sediment variability in glacier-fed lakes for continuous glacier
reconstructions during the Holocene, northern Folgefonna, western Norway,
Holocene, 15, 161–176, https://doi.org/10.1191/0959683605hl797rp, 2005.
Ballantyne, C. K.: Paraglacial geomorphology, Quaternary Sci. Rev., 21, 18–19,
1935–2017, https://doi.org/10.1016/S0277-3791(02)00005-7,
2002.
Baron, J., McKnight, D., and Denning, A. S.: Sources of dissolved, and particulate organic material in Loch Vale Watershed, Rocky Mountain National
Park, Colorado, USA, Biogeochemistry, 15, 89–110, https://doi.org/10.1007/BF00003219, 1991.
Baster, I., Girardclos, S., Pugin, A., and Wildi, W.: High-resolution seismic
stratigraphy of an Holocene lacustrine delta in western Lake Geneva
(Switzerland), in: Lake Systems from the Ice Age to Industrial Time, edited
by: Ariztegui, D. and Wildi, W., Eclogae Geologicae Helvetiae, Swiss J.
Geosci., Vol. 1, Birkhäuser, Basel, https://doi.org/10.1007/978-3-0348-7992-7_3, 2003.
Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkempe, A. Richter,
L. J., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
https://https://doi.org/10.1038/ngeo618, 2009.
Baumer, M. M., Wagner, B., Meyer, H., Leicher, N., Lenz, M., Fedorov, G.,
Pestryakova, L. A., and Melles, M.: Climatic, and environmental changes in
the Yana Highlands of north-eastern Siberia over the last c. 57 000 years,
derived from a sediment core from Lake Emanda, Boreas, 50, 114–133,
https://doi.org/10.1111/bor.12476, 2020.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 million years, Quaternary Sci. Rev., 10, 297–317, 1991.
Birks, H. H. and Birks, H. J. B.: Multi-proxy studies in palaeolimnology, Veget.
Hist. Archaeobot., 15, 235–251, https://doi.org/10.1007/s00334-006-0066-6, 2006.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., and Diekmann,
B.: Environmental variability in northeastern Siberia during the last
∼13 300 yr inferred from lake diatoms, and sediment-geochemical parameters, Palaeogeogr. Palaeocl.,
329/330, 22–36, https://doi.org/10.1016/j.palaeo.2012.02.003, 2012.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D. Y., Schwamborn, G., and Diekmann,
B.: Thermokarst processes, and depositional events in a tundra lake,
northeastern Siberia, Permafr. Periglac. Process., 24, 160–174, https://doi.org/10.1002/ppp.1769, 2013.
Biskaborn, B. K, Subetto, D., Savelieva, L,. Vakhrameeva, P., Hansche, A.,
Herzschuh, U., Klemm, J., Heinecke, L., Pestryakova, L., Meyer, H., Kuhn,
G., and Diekmann, B.: Late Quaternary vegetation, and lake system dynamics in
north-eastern Siberia: Implications for seasonal climate variability, Quaternary Sci. Rev., 147, 406–421, https://doi.org/10.1016/j.quascirev.2015.08.014, 2016.
Biskaborn, B. K., Nazarova, L., Pestryakova, L. A., Syrykh, L., Funck, K.,
Meyer, H., Chapligin, B., Vyse, S., Gorodnichev, R., Zakharov, E., Wang, R.,
Schwamborn, G., Bailey, H. L., and Diekmann, B.: Spatial distribution of
environmental indicators in surface sediments of Lake Bolshoe Toko, Yakutia,
Russia, Biogeosciences, 16, 4023–4049, https://doi.org/10.5194/bg-16-4023-2019, 2019.
Biskaborn, B. K., Narancic, B., Stoof-Leichsenring, K. R., Pestryakova, L. A.,
Appleby, P. G., Piliposian, G. T., and Diekmann, B.: Effects of climate change, and industrialization on Lake Bolshoe Toko, eastern Siberia, J. Paleolimnol.,
65, 335–352, https://doi.org/10.1007/s10933-021-00175-z, 2021.
Björck, S. and Wohlfarth, B.: 14C chronostratigraphic techniques in
paleolimnology, in: Tracking environmental change using lake sediments,
Basin Analysis, Coring, and Chronological Techniques, edited by: Last, W. M.
and Smol, J. P., Springer, Dordrecht, the Netherlands, 205–245, 2002.
Blott, S. J. and Pye, K.: GRADISTAT: A grain size distribution, and statistics package for the analysis of unconsolidated sediments, Earth Surf.
Proc. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Bouchard, F., Francus, P., Pienitz, R., and Laurion, I.: Sedimentology, and geochemistry of thermokarst ponds in discontinuous permafrost, subarctic
Quebec, Canada, J. Geophys. Res., 116, G00M04, https://https://doi.org/10.1029/2011JG001675, 2011.
Bouchard, F., MacDonald, L. A., Turner, K. W., Thienpont, J. R., Medeiros,
A. S., Biskaborn, B. K., Korosi, J., Hall, R. I., Pienitz, R., and Wolfe, B. B.:
Paleolimnology of thermokarst lakes: a window into permafrost landscape
evolution, Arctic Sci., 3, 91–117, https://doi.org/10.1139/as-2016-0022, 2016.
Brigham-Grette, J., Gualtieri, L. M., Glushkova, O. Y., Hamilton, T. D.,
Mostoller, D., and Kotov, A.: Chlorine-36, and 14C chronology support a limited
last glacial maximum across central Chukotka, northeastern Siberia, and no
Beringian ice sheet, Quaternary Res., 59, 386–398, https://doi.org/10.1016/S0033-5894(03)00058-9, 2003.
Brosius, L. S., Walter Anthony, K. M., Treat, C. C., Lenz, J., Jones, M. C.,
Bret-Harte, M. S., and Grosse, G.: Spatiotemporal patterns of northern lake
formation since the Last Glacial Maximum, Quaternary Sci. Rev., 253, 106773, https://doi.org/10.1016/j.quascirev.2020.106773, 2021.
Bünseler, L.: Interaction of active layer carbon, and nitrogen content
with vegetation types on a tundra to taiga transect in eastern
Siberia, MSc thesis, Potsdam University, Potsdam, Germany, 2019.
Campbell, I. D., Campbell, C., Vitt, D. H., Kelker, D., Laird, L. D., Trew,
D., Kotak, B., LeClair, D., and Bayley, S.: A first estimate of organic carbon
storage in Holocene lake sediments in Alberta, Canada, J.
Paleolimnol., 24, 395–400, https://https://doi.org/10.1023/A:1008103605817, 2000.
Canty, A. and Ripley, B. D.: boot: Bootstrap R (S-Plus) Functions, R package
version 1.3–26, 2020.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon pool, Ecosystems, 10, 172–185,
https://https://doi.org/10.1007/s10021-006-9013-8, 2007.
Cremer, H. and Wagner, B.: The diatom flora in the ultra-oligotrophic Lake
El'gygytgyn, Chukotka, Polar Biol., 26, 105–114, https://doi.org/10.1007/s00300-002-0445-0, 2003.
Croudace, I. W. and Rothwell, R. G. (Eds.): Micro-XRF Studies of Sediment Cores:
Applications of a non-destructive tool for the environmental sciences,
Springer, the Netherlands, 656 pp., https://doi.org/10.1007/978-94-017-9849-5, 2015.
Cuven, S., Francus, P., and Lamoureux, S. F.: Estimation of grain size
variability with micro X-ray fluorescence in laminated lacustrine sediments,
Cape Bounty, Canadian High Arctic, J. Paleolimnol., 44, 803–817, https://doi.org/10.1007/s10933-010-9453-1, 2010.
D'Arcy, P. and Carignan, R.: Influence of catchment topography on water
chemistry in southeastern Québec shield lakes, Can. J. Fish. Aquat.
Sci., 54, 2215–2227, https://https://doi.org/10.1139/f97-129, 1997.
Davison, A. C. and Hinkley, D. V. (Eds.): Bootstrap Methods, and Their
Applications, Cambridge University Press, Cambridge, available at: http://statwww.epfl.ch/davison/BMA/ (last access: 19 August 2021), 1997.
Dean, W. E. and Gorham, E.: Magnitude, and significance of carbon burial in
lakes, reservoirs, and peatlands, Geology, 26, 535–538, 1998.
Dedkov, A.: The relationship between sediment yield, and drainage basin area.
Sediment Transfer through the Fluvial System (Proceedings of a symposium
held in Moscow. August 2004), IAHS Publ., 288, 197–204, 2004.
Diekmann, B., Pestryakova, L., Nazarova, L., Subetto, D., Tarasov, P.,
Stauch, G., Thiemann, A., Lehmkuhl, F., Biskaborn, B., Kuhn, G., Henning,
D., and Müller, S.: Late Quaternary lake dynamics in the Verkhoyansk
Mountains of eastern Siberia: Implications for climate, and glaciation
history, Polarforschung, 86, 97–110, https://doi.org/10.2312/polarforschung.86.2.97, 2016.
Dietze, E., Maussion, F., Ahlborn, M., Diekmann, B., Hartmann, K., Henkel,
K., Kasper, T., Lockot, G., Opitz, S., and Haberzettl, T.: Sediment transport
processes across the Tibetan Plateau inferred from robust grain-size end
members in lake sediments, Clim. Past, 10, 91–106, https://doi.org/10.5194/cp-10-91-2014, 2014.
Doran, P. T.: Sedimentology of Colour Lake, a Nonglacial High Arctic Lake,
Axel Heiberg Island, N. W. T., Canada, Arct. Alp.
Res., 25, 353–367, https://doi.org/10.1080/00040851.1993.12003021, 1993.
Einola, E., Rantakari, M., Kankaala, P., Kortelainen, P., Ojala,
A., Pajunen, H., Mäkelä, S., and Arvola, L.: Carbon pools, and fluxes
in a chain of five boreal lakes: A dry, and wet year comparison, J. Geophys.
Res., 116, G03009, https://doi.org/10.1029/2010JG001636, 2011.
Einsele, G., Yan, J. P., and Hinderer, M.: Atmospheric carbon burial in
modern lake basins, and its significance for the global carbon budget, Glob.
Planet. Change, 30, 167–195, https://https://doi.org/10.1016/S0921-8181(01)00105-9, 2001.
Elias, S. A. and Brigham-Grette, J.: Glaciations: Late Pleistocene glacial
events in Beringia, in: Encyclopedia of Quaternary Science, edited by: Elias,
S. A., Elsevier, Amsterdam, 191–201, 2013.
Ferland, M. E., del Giorgio, P. A., Teodoru, C. R., and Prairie, Y. T.:
Long-term C accumulation, and total C stocks in boreal lakes in northern
Québec, Global Biogeochem. Cy., 26, GB0E04, https://doi.org/10.1029/2011GB004241, 2012.
Ferland, M. E., Prairie, Y. T., Teodoru, C., and del Giorgio, P. A.: Linking
organic carbon sedimentation, burial efficiency, and long-term accumulation
in boreal lakes, J. Geophys. Res.-Biogeo., 119, 836–847, https://doi.org/10.1002/2013JG002345, 2014.
Finkenbinder, M. S., Abbott, M. B., Edwards, M. E., Langdon, C. T., Steinman,
B. A., and Finney, B. P.: A 31,000 year record of paleoenvironmental, and lake-level change from Harding Lake, Alaska, USA, Quaternary Sci. Rev., 87,
98–113, https://doi.org/10.1016/j.quascirev.2014.01.005, 2014.
Finkenbinder, M. S., Abbott, M. B., Finney, B. P., Stoner, J. S., and Dorfman, J. M.:
A multi-proxy reconstruction of environmental change spanning the last
37,000 years from Burial Lake, Arctic Alaska,
Quaternary Sci. Rev, 126, 227–241, https://doi.org/10.1016/j.quascirev.2015.08.031, 2015.
Folk, R. L. and Ward, W. C.: Brazos River bar [Texas]; a study in the
significance of grain size parameters, J. Sediment. Res., 27, 3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D, 1957.
Francke, A., Wennrich, V., Sauerbrey, M., Juschus, O., Melles, M., and Brigham-Grette, J.: Multivariate statistic, and time series analyses of
grain-size data in quaternary sediments of Lake El'gygytgyn, NE Russia,
Clim. Past, 9, 2459–2470, https://doi.org/10.5194/cp-9-2459-2013, 2013.
Friedman, G. M. and Sanders, J. E. (Eds.): Principles of Sedimentology, Wiley,
New York, 1978.
Fritz, M., Unkel, I., Lenz, J., Gajewski, K., Frenzel, P., Paquette, N.,
Lantuit, H., Körte, L., and Wetterich, S.: Regional environmental change
versus local signal preservation in Holocene thermokarst lake sediments: A
case study from Herschel Island, Yukon (Canada), J. Paleolimnol., 60, 77–96,
https://doi.org/10.1007/s10933-018-0025-0, 2018.
Gentz, T., Bonk, E., Hefter, J., Grotheer, H., Meyer,
V., and Mollenhauer, G.: Establishment of routine sample preparation
protocols at the newly installed MICADAS 14C dating facility at AWI, AMS 14
Conference, Ottawa, 14–18 August 2017, 2017.
Glushkova, O. Y.: Chap. 63: Late Pleistocene Glaciations in North-East
Asia, in: Developments in Quaternary Sciences, edited by: Ehlers, J.,
Gibbard, P. L., and Hughes, P. D., Elsevier, Amsterdam, 865–875,
https://doi.org/10.1016/B978-0-444-53447-7.00063-5, 2011.
Gromig, R., Wagner, B., Wennrich, V., Fedorov, G., Savelieva, L., Lebas, E.,
Krastel, S., Brill, D., Andreev, A., Subetto, D., and Melles, M.:
Deglaciation history of Lake Ladoga (northwestern Russia) based on varved
sediments, Boreas, 48, 330–348, https://doi.org/10.1111/bor.12379, 2019.
Gurnell, A., Hannah, D., and Lawler, D: Suspended sediment yield from glacier
basins, Erosion, and Sediment Yield: Global, and Regional Perspectives,
Proceedings of the Exeter Symposium, July, 1996.
Haflidason, H., Zweidorff, J. L., Baumer, M., Gyllencreutz, R., Svendsen, J.
I., Gladysh, V., and Logvina, E.: The Lastglacial, and Holocene
seismostratigraphy, and sediment distribution of Lake Bolshoye Shchuchye,
Polar Ural Mountains, Arctic Russia, Boreas, 48, 452–469, https://doi.org/10.1111/bor.12387, 2019.
Hamilton, T. and Ashley, G.: Epiguruk: a late Quaternary environmental record
from northwestern Alaska, GSA Bull., 105, 583–602, https://doi.org/10.1130/0016-7606(1993)105<0583:ealqer>2.3.co;2, 1993.
Heinecke, H., Mischke, S., Adler, S., Barth, A., Biskaborn, B. K., Plessen, B., Nitze, I., Kuhn, G., Rajabov, I., and Herzschuh, U.: Climatic, and limnological
changes at Lake Karakul (Tajikistan) during the last ∼29 cal ka, J. Paleolimnol., 58, 317–334, https://doi.org/10.1007/s10933-017-9980-0, 2017.
Hinderer, M. and Einsele, G.: The world's large lake basins as
denudation-accumulation systems, and implications for their lifetimes, J.
Paleolimnol., 26, 355–372, https://doi.org/10.1023/A:1012651232541, 2001.
Huang, S., Herzschuh, U., Pestryakova, L. A., Zimmermann, H. H., Davydova,
P., Biskaborn, B. K., Shevtsova, I., and Stoof-Leichsenring, K. R.: Genetic
and morphologic determination of diatom community composition in surface
sediments from glacial, and thermokarst lakes in the Siberian Arctic, J.
Paleolimnol., 64, 225–242, https://doi.org/10.1007/s10933-020-00133-1, 2020.
Jenrich, M., Angelopoulos, M., Grosse, G., Overduin, P.P.,
Schirrmeister, L., Nitze, I., Biskaborn, B.K., Liebner, S., Grigoriev, M., Murray, A., and Strauss, J.: Thermokarst Lagoons on Bykovsky Peninsula: A Core-Based Assessment of Depositional Characteristics, and Estimate of Carbon Pools, Front. Earth Sci., 9, 518, https://doi.org/10.3389/feart.2021.637899, 2021.
Jongejans, L., Strauss, J., Lenz, J., Peterse, F., Mangelsdorf, K., Fuchs,
M., and Grosse, G.: Organic matter characteristics in Yedoma, and thermokarst
deposits on Baldwin Peninsula, west Alaska, Biogeosciences, 15, 6033–6048,
https://doi.org/10.5194/bg-15-6033-2018, 2018.
Jongejans, L. and Strauss, J.: Bootstrapping approach for permafrost
organic carbon pool estimation, Zenodo, https://doi.org/10.5281/zenodo.3734247, 2020.
Karlen, W. and Matthews, J. A.: Reconstructing Holocene Glacier Variations
from Glacial Lake Sediments: Studies from Nordvestlandet, and Jostedalsbreen-Jotunheimen, Southern Norway, Geografiska Annaler, Series A,
Phys. Geogr., 74, 327–348, 1992.
Kastowski, M., Hinderer, M., and Vecsei, A.: Long-term carbon burial in
European lakes: Analysis, and estimate, Global Biogeochem. Cy., 25, GB3019,
http://https://doi.org/10.1029/2010GB003874, 2011.
Kilian, R., Baeza, O., Breuer, S., Ríos, F., Arz, H., Lamy, F., Wirtz,
J., Baque, D., Korf, P., Kremer, K., Ríos, C., Mutschke, E., Simon, M.,
De Pol-Holz, R., Arevalo, M., Wörner, G., Schneider, C., and Casassa, G.:
Late Glacial, and Holocene Paleogeographical, and Paleoecological Evolution of
the Seno Skyring, and Otway Fjord Systems in the Magellan Region, Anales
Instituto Patagonia (Chile), 41, 5–26, https://doi.org/10.4067/S0718-686X2013000200001, 2013.
Kokorowski, H. D., Anderson, P. M., Sletten, R. S., Lozhkin, A. V., and Brown
T. A.: Late Glacial, and Early Holocene Climatic Changes Based on a Multiproxy
Lacustrine Sediment Record from Northeast Siberia, Arct. Antarct. Alp. Res., 40, 497–505, 2008a.
Kokorowski, H. D., Anderson, P. M., Mock, C. J., and Lozhkin, A. V.: A re-evaluation
and spatial analysis of evidence for a Younger Dryas climatic reversal in
Beringia, Quaternary Sci. Rev., 27, 1710–1722, https://doi.org/10.1016/j.quascirev.2008.06.010, 2008b.
Kortelainen, P., Pajunen, H., Rantakari, M., and Saarnisto M.: A large carbon
pool, and small sink in boreal Holocene lake sediments, Global Change
Biol., 10, 1648–1653, https://https://doi.org/10.1111/j.1365-2486.2004.00848.x, 2004.
Kříbek, B., Knésl, I., Rojík, P., Sýkorová, I.,
and Martínek, K.: Geochemical history of a Lower Miocene lake, the Cypris
Formation, Sokolov Basin, Czech Republic, J. Paleolimnol., 58, 169–190,
https://doi.org/10.1007/s10933-017-9970-2, 2017.
Lebas, E., Krastel, S., Wagner, B., Gromig, R., Fedorov, G., Baumer, M.,
Kostromina, N., and Haflidason, H.: Seismic stratigraphical record of Lake
Levinson-Lessing, Tayma Peninsula: evidence for ice-sheet dynamics, and lake-level fluctuations since the Early Weichselian, Boreas, 48, 470–487,
https://doi.org/10.1111/bor.12381, 2019.
Lebas, E., Gromig, R., Krastel, S., Wagner, B., Fedorov, G., Görtz, C.,
Averes, T., Subetto, D., Naumenko, M., and Melles, M.: Pre-glacial, and post-glacial history of the Scandinavian Ice Sheet in NW Russia – Evidence
from Lake Ladoga, Quaternary Sci. Rev., 251, 106637, https://doi.org/10.1016/j.quascirev.2020.106637, 2021.
Leemann, A. and Niessen, F.: Holocene glacial activity, and climatic variations in
the Swiss Alps: reconstructing a continuous record from proglacial lake
sediments, Holocene, 4, 259–268, https://doi.org/10.1177/095968369400400305,
1994b.
Lehman, J. T.: Reconstructing the rate of accumulation of lake sediment:
Their effect of sediment focusing, Quaternary Res., 5,541–550,
https://https://doi.org/10.1016/0033-5894(75)90015-0, 1975.
Lenz, M., Savelieva, L., Frolova, L., Cherezova, A., Moros, M., Baumer, M.
M., Gromig, R., Kostromina, N., Nigmatullin, N., Kolka, V., Wagner, B.,
Fedorov, G., and Melles, M.: Lateglacial, and Holocene environmental history
of the central Kola region, northwestern Russia revealed by a sediment
succession from Lake Imandra, Boreas, 50, 76–100, https://doi.org/10.1111/bor.12465, 2020.
Lougheed, B. C. and Obrochta, S. P.: A Rapid, Deterministic Age-Depth Modeling
Routine for Geological Sequences With Inherent Depth Uncertainty,
Paleoceanogr. Paleoclimatol., 34, 122–133, https://doi.org/10.1029/2018PA003457, 2019.
Lozhkin, A. V. and Anderson, P. M.: Late quaternary lake records from the Anadyr
lowland, central Chukotka (Russia), Quaternary Sci. Rev., 68, 1–16, https://doi.org/10.1016/j.quascirev.2013.02.007, 2013.
Lozhkin, A. V., Brown, T. A., Anderson, P. M., Glushkova, O. Y., and Melekestsev, I.
V.: The importance of radiocarbon dates, and tephra for developing
chronologies of Holocene environmental changes from lake sediments, North
Far East, Russ. J. Pac. Geol., 10, 249–262, https://doi.org/10.1134/S1819714016040047, 2016.
Lozhkin, A. V., Anderson, P. M., Minyuk, P., Korzun, J., Brown, T., Pakhomov,
A., Tsygankova, V., Burnatny, S., and Naumov, A.: Implications for conifer
glacial refugia, and postglacial climatic variation in western Beringia from
lake sediments of the Upper Indigirka basin, Boreas, 47, 938–953, https://doi.org/10.1111/bor.12316, 2018.
Lunkka, J. P., Saarnisto, M., Gey, V., Demidov, I., and Kiselova, V.: Extent, and age of the Last Glacial Maximum in the southeastern sector of the
Scandinavian Ice Sheet, Glob. Planet. Change, 31, 407–425, https://doi.org/10.1016/S0921-8181(01)00132-1, 2001.
Marshall, M. H., Lamb, H. F., Huws, D., Davies, S. J., Bates, R., Bloemendal,
J., Boyle, J., Leng, M. J., Umer, M., and Bryant, C.: Late Pleistocene, and Holocene drought events at Lake Tana, the source of the Blue Nile, Glob.
Planet. Change, 78, 147–161, https://doi.org/10.1016/j.gloplacha.2011.06.004, 2011.
Martin, P., Granina, L., Martens, K., and Goddeeris, B.: Oxygen concentration
profiles in sediments of two ancientlakes: Lake Baikal (Siberia, Russia), and Lake Malawi (EastAfrica), Hydrobiologia, 367, 163–174, https://doi.org/10.1023/A:1003280101128, 1998.
McLaren, P. and Bowles, D.: The effects of sediment transport on grain-size
distributions, Int. J. Sediment Res., 55, 457–470, https://doi.org/10.1306/212F86FC-2B24-11D7-8648000102C1865D, 1985.
Melles, M., Brigham-Grette, J., Glushkova, O. Y., Minyuk, P. S., Nowaczyk,
N. R., and Hubberten, H. W.: Sedimentary geochemistry of core PG1351 from Lake
El'gygytgyn-a sensitive record of climate variability in the East Siberian
Arctic during the past three glacial-interglacial cycles, J. Paleolimnol., 37,
89–104, https://doi.org/10.1007/s10933-006-9025-6, 2007.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V.,
DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L.,
Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P.,
Vogel, H., and Wagner, B.: 2.8 Million years of arctic climate change from Lake
El'gygytgyn, NE Russia, Science, 337, 315–320, https://doi.org/10.1126/science.1222135, 2012.
Mendonça, R., Müller, R. A., Clow, D., Verpoorter, C., Raymond, P.,
Tranvik, L. J., and Sobek, S.: Organic carbon burial in global lakes, and reservoirs, Nat. Commun., 8, 1694, https://doi.org/10.1038/s41467-017-01789-6, 2017.
Menne, M. J., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X.,
Anthony, S., Ray, R., Vose, R. S., Gleason, B. E., and Houston, T. G.: Global
Historical Climatology Network – Daily (GHCN-Daily), Version 3 NOAA National
Climatic Data Center, https://https://doi.org/10.7289/V5D21VHZ, 2012.
Meyer, H., Derevyagin, A. Y., Siegert, C., and Hubberten, H. W.: Paleoclimate
studies on Bykovsky Peninsula, North Siberia-hydrogen, and oxygen isotopes in
ground ice, Polarforschung, 70, 37–51, 2002.
Meyers, P. A. and Teranes, J. L.: Sediment organic matter, In: Tracking
Environmental Change Using Lake Sediments, edited by Smol, J., Kluwer
Academic Publishers, Dordrecht, 239–269, https://doi.org/10.1007/0-306-47670-3_9, 2005.
Moernaut, J., Verschuren, D., Charlet, F., Kristen, I., Fagot, M., and De
Batist, M.: The seismic-stratigraphic record of lake-level fluctuations in
Lake Challa: Hydrological stability, and change in equatorial East Africa
over the last 140 ka, Earth Planet. Sc. Lett., 290, 214–223, https://doi.org/10.1016/j.epsl.2009.12.023, 2010.
Munroe, J. and Brencher, Q.: Holocene Carbon Burial in Lakes of the Uinta
Mountains, Utah, USA, quaternary, 2, 1–13, https://doi.org/10.3390/quat2010013, 2019.
Naeher, S., Gilli, A., North, R. P., Hamann, Y., and Schubert, C. J.: Tracing
bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich,
Switzerland, Chem. Geol., 352, 125–133, https://doi.org/10.1016/j.chemgeo.2013.06.006, 2013.
Nolan, M. and Brigham-Grette, J.: Basic hydrology, limnology, and meteorology
of modern Lake El'gygytgyn, Siberia, J. Paleolimnol., 37, 17–35, https://doi.org/10.1007/s10933-006-9020-y, 2007.
Nolan, M., Liston, G., Prokein, P., Brigham-Grette, J., Sharpton, V. L.,
and Huntzinger, R.: Analysis of lake ice dynamics, and morphology on Lake
El'gygytgyn, NE Siberia, using synthetic aperture radar (SAR), and Landsat, J. Geophys. Res., 107, 8162, https://doi.org/10.1029/2001JD000934, 2002.
Nowaczyk, N. R., Melles, M., and Minyuk, P.: A revised age model for core
PG1351 from Lake El'gygytgyn, Chukotka, based on magnetic susceptibility
variations tuned to northern hemisphere insolation variations, J.
Paleolimnol., 37, 65–76, https://doi.org/10.1007/s10933-006-9023-8, 2007.
Oswald, W. W., Anderson, P. M., Brown, T. A., Brubaker, L. B., Hu, F. S.,
Lozhkin, A. V., Tinner, W., and Kaltenrieder, P.: Effects of sample mass, and macrofossil type on radiocarbon dating of arctic, and boreal lake sediments,
Holocene, 15, 758–767, 2005.
Pajunen, H.: lake sediments: their carbon store, and related accumulations
rates, Spec. Pap. Geol. Surv. Finl., 29, 39–69, 2000.
Pfalz, P., Diekmann, B., Freytag, J.-C., and Biskaborn, B. K.: Harmonizing
heterogeneous multi-proxy data
from lake systems, Comput. Geosci., 153, 104791,
https://doi.org/10.1016/j.cageo.2021.104791, 2021.
Pokorný, M., Sanderson, D., Cresswell, A., Manuel Lirio, J., Herminda Coria, S., Nedbalová, L., Lami, A., Musazzi, S., Van de Vijver, B., Nývlt, D., and Kopalová, K.:
Late-Holocene palaeoenvironmental changes at Lake Esmeralda (Vega Island,
Antarctic Peninsula) based on a multi-proxy analysis of laminated lake
sediment, Holocene, 29, 1155–1175, https://doi.org/10.1177/0959683619838033,
2019.
Procházka, V., Mizera, J., Kletetschka, G., and Vondrák, D.: Late Glacial
sediments of the Stará Jímka paleolake, and the first finding of
Laacher See Tephra in the Czech Republic, Int. J. Earth Sci.,
108, 357–378, https://doi.org/10.1007/s00531-018-1658-y, 2019.
R Core Team.: R: A language, and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org/ (last access: 19 August 2021), 2013.
Regnéll, C., Haflidason, H., Mangerud, J., and Svendsen, J. I.: Glacial
and climate history of the last 24 000 years in the Polar Ural Mountains,
Arctic Russia, inferred from partly varved lake sediments, Boreas, 48,
432–443, https://doi.org/10.1111/bor.12369, 2019.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk
Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A.,
Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der
Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R.,
Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M.,
Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S.,
Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.:
The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal ka BP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Schirrmeister, L., Grosse, G., Wetterich, S., Overduin, P. P., Strauss, J.,
Schuur, E. A. G., and Hubberten, H. W.: Fossil Organic Matter Characteristics
in Permafrost Deposits of the Northeast Siberian Arctic, J. Geophys. Res., 116,
G00M02, https://doi.org/10.1029/2011JG001647, 2011.
Sekellick, A., Banks, W., and Myers, M.: Water Volume, and Sediment Volume, and Density in Lake Linganore between Boyers Mill Road Bridge, and Bens Branch,
Frederick County, Maryland. Scientific Investigations Report, 2013–5082, U.S.
Department of the Interior, U.S. Geological Survey, 2013.
Shevtsova, I., Heim, B., Kruse, S., Schröder, J., Troeva, E.I.,
Pestryakova, L. A., Zakharov E. S., and Herzschuh, U.: Strong shrub expansion
in tundra-taiga, tree infilling in taiga, and stable tundra in central
Chukotka (north-eastern Siberia) between 2000, and 2017, Environ. Res. Lett., 15, 8,
https://doi.org/10.1088/1748-9326/ab9059, 2020.
Sifeddine, A., Meyers, P., Cordeiro, R., Albuquerque, A., Bernardes, M.,
Turcq, B., and Abra ̃o, J.: Delivery, and deposition of organic matter in
surface sediments of Lagoa do Caçó (Brazil), J. Paleolimnol., 45,
385–396, https://doi.org/10.1007/s10933-011-9506-0, 2011.
Singh, M., Sinha, R., and Tandon, S. K.: Geomorphic connectivity, and its
application for understanding landscape complexities: a focus on the
hydro-geomorphic systems of India, Earth Surf. Process. Landf., 46,
110–130, 2020.
Smith, D. and Jol, H.: Radar structure of a Gilbert-type delta, Peyto Lake,
Banff National Park, Canada, Sediment. Geol., 113, 195–209, https://doi.org/10.1016/S0037-0738(97)00061-4, 1997.
Smol, J. P., Birks, H. J. B., and Last, W. M. (Eds.): Tracking environmental change
using lake sediments, Kluwer academic publishers, New York, USA, 2002.
Sobek, S., Durisch-Kaiser, E., Zurbrügg, R., Wongfun, N., Wessels,
M., Pasche, N., and Wehrli, B.: Organic carbon burial efficiency in lake
sediments controlled by oxygen exposure time, and sediment source, Limnol.
Oceanogr., 54, 2243–2254, https://doi.org/10.4319/lo.2009.54.6.2243, 2009.
Sobek, S., Anderson, N. J., Bernasconi, S. M., and Sontro T. D.: Low organic carbon burial efficiency in arctic lake sediments, J. Geophys. Res.-Biogeo., 119, 1231–1243, https://doi.org/10.1002/2014JG002612, 2014.
Stauch, G. and Gualtieri, L.: Late Quaternary glaciations in northeastern
Russia, J. Quaternary Sci., 23, 545–558, https://doi.org/10.1002/jqs.1211, 2008.
Stauch, G. and Lehmkuhl, F.: Quaternary glaciations in the Verkhoyansk
Mountains, Northeast Siberia, Quaternary Res., 74, 145–155, https://doi.org/10.1016/j.yqres.2010.04.003, 2010.
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich,
M., Herzschuh, U., and Hubberten, H.-W.: The deep permafrost carbon pool of
the Yedoma region in Siberia, and Alaska, Geophys. Res.
Lett., 40, 6165–6170, https://doi.org/10.1002/2013GL058088, 2013.
Strunk, A., Olsen, J., Sanei, H., Rudra, A., and Larsen, N.: Improving the
reliability of bulk sediment radiocarbon dating, Quaternary Sci. Rev., 242,
106442, https://doi.org/10.1016/j.quascirev.2020.106442, 2020.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 8.2, available at:
http://calib.org (last access: 17 August 2021), 2020.
Subetto, D. A., Nazarova, L. B., Pestryakova, L. A., Syrykh, L. S., Andronikov,
A. V., Biskaborn, B., Diekmann, B., Kuznetsov, D. D., Sapelko, T. V., and Grekov,
I. M.: Paleolimnological studies in Russian northern Eurasia: A review,
Contemp. Probl. Ecol., 10, 327–335, 2017.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A.,
Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K.,
Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T.,
Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L.,
McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A.,
Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S.,
Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J.,
Verschoor, A. M., von Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes
and reservoirs as regulators of carbon cycling, and climate, Limnol.
Oceanogr., 54, 2298–2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
Tripathi, J. and Rajamani, V.: Geochemistry of the loessic sediments on Delhi
ridge, eastern Thar Desert, Rajasthan: implications for exogenic processes,
Chem. Geol., 155, 265–278, https://doi.org/10.1016/S0009-2541(98)00168-5, 1999.
Van der Bilt, W., Bakke, J., Vasskog, K., D' Andrea, W. J.,
Bradley, R. S., and Ólafsdóttir, S.: Reconstruction of glacier
variability from lake sediments reveals dynamic Holocene climate in
Svalbard, Quaternary Sci. Rev., 126, 15, 201–218,
https://doi.org/10.1016/j.quascirev.2015.09.003, 2015.
Vologina, E. G., Granin, N. G., Lomonosova, T. K., Vorobyeva, S. S., Kulikova,
N. A., Kalashnikova, I. A., and Granina, L. Z.: Input of silt-sand material to the
central part of southern lake Baikal by ice transportation, BAIK-SED-2, Gent
University, Belgium, 17–18, 2003.
Vyse, S. A., Herzschuh, U., Andreev, A. A., Pestryakova, L. A., Diekmann, B.,
Armitage, S. J., and Biskaborn, B. K.: Geochemical, and sedimentological responses
of arctic glacial Lake Ilirney, chukotka (far east Russia) to
palaeoenvironmental change since ∼51.8 ka BP, Quaternary Sci. Rev., 247,
106607, https://doi.org/10.1016/j.quascirev.2020.106607, 2020.
Vyse, S. A., Herzschuh, U., Pfalz, G., Diekmann, B., Nowaczyk, N. R., Pestryakova, L. A., and Biskaborn, B. K.: Sedimentological and biogeochemical dataset for Arctic glacial lake Rauchuagytgyn, Chukotka, Russia, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.929719, 2021.
Wang, R., Zhang, Y., Wuennemann, B., Biskaborn, B. K., Yin, H., Xia, F.,
Zhou, L., and Diekmann, B.: Linkages between Quaternary climate change, and sedimentary processes in Hala Lake, northern Tibetan Plateau, China. J.
Asian Earth Sci., 107, 140–150, 2015.
Windirsch, T., Grosse, G., Ulrich, M., Schirrmeister, L., Fedorov, A.,
Konstantinov, P., Fuchs, M., Jongejans, L., Wolter, J., Opel, T., and Strauss,
J.: Organic carbon characteristics in ice-rich permafrost in alas, and Yedoma
deposits, central Yakutia, Siberia, Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020, 2020.
Woolway, R. I. and Merchant, C. J.: Worldwide alteration of lake mixing regimes
in response to climate change, Nat. Geosci., 12, 271–276, https://doi.org/10.1038/s41561-019-0322-x, 2019.
Zhuravlev, G. F., Kazymin, S. S., and Pukalo, P. V.: State geological map of the
Russian Federation, scale 1:200 000, Anjuyjsker-Chaunsker Series, Moscow, St. Petersburg, 1999.
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Lakes act as important stores of organic carbon and inorganic sediment material. This study...
Altmetrics
Final-revised paper
Preprint