Articles | Volume 18, issue 23
https://doi.org/10.5194/bg-18-6093-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6093-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methane in Zackenberg Valley, NE Greenland: multidecadal growing season fluxes of a high-Arctic tundra
Department of Ecoscience, Arctic Research Centre Aarhus University,
Roskilde, Denmark
Arctic Geology Department, The University Centre in Svalbard,
Longyearbyen, Norway
Mikhail Mastepanov
Department of Ecoscience, Arctic Research Centre Aarhus University,
Roskilde, Denmark
Oulanka Research Station, University of Oulu, Oulu, Finland
Hanne H. Christiansen
Arctic Geology Department, The University Centre in Svalbard,
Longyearbyen, Norway
Torben R. Christensen
Department of Ecoscience, Arctic Research Centre Aarhus University,
Roskilde, Denmark
Oulanka Research Station, University of Oulu, Oulu, Finland
Related authors
No articles found.
Eeva Järvi-Laturi, Teemu Tahvanainen, Eero Koskinen, Efrén López-Blanco, Juho Lämsä, Hannu Marttila, Mikhail Mastepanov, Riku Paavola, Maria Väisänen, and Torben Røjle Christensen
EGUsphere, https://doi.org/10.5194/egusphere-2025-217, https://doi.org/10.5194/egusphere-2025-217, 2025
Short summary
Short summary
Our research investigates how plant community composition influences methane emissions in a northern boreal rich fen. We measured methane fluxes year-round using manual chambers across 36 plots. Our findings suggest that sedges, particularly Carex rostrata, significantly impact the fluxes throughout the year. This study enhances our understanding of vegetation-driven methane emissions, providing valuable insights for predicting future changes in peatland methane emissions.
Lotte Wendt, Line Rouyet, Hanne H. Christiansen, Tom Rune Lauknes, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2972, https://doi.org/10.5194/egusphere-2024-2972, 2024
Short summary
Short summary
In permafrost environments, the ground surface moves due to the formation and melt of ice in the ground. This study compares ground surface displacements measured from satellite images against field data of ground ice contents. We find good agreement between the detected seasonal subsidence and observed ground ice melt. Our results show the potential of satellite remote sensing for mapping ground ice variability, but also indicate that ice in excess of the pore space must be considered.
Hanne H. Christiansen, Ilkka S. O. Matero, Lisa Baddeley, Kim Holmén, Clara J. M. Hoppe, Maarten J. J. E. Loonen, Rune Storvold, Vito Vitale, Agata Zaborska, and Heikki Lihavainen
Earth Syst. Dynam., 15, 933–946, https://doi.org/10.5194/esd-15-933-2024, https://doi.org/10.5194/esd-15-933-2024, 2024
Short summary
Short summary
We provide an overview of the state and future of Earth system science in Svalbard as a synthesis of the recommendations made by the scientific community active in the archipelago. This work helped identify foci for developments of the observing system and a path forward to reach the full interdisciplinarity needed to operate at Earth system science scale. Better understanding of the processes in Svalbard will benefit both process-level understanding and Earth system models.
Sonika Shahi, Jakob Abermann, Tiago Silva, Kirsty Langley, Signe Hillerup Larsen, Mikhail Mastepanov, and Wolfgang Schöner
Weather Clim. Dynam., 4, 747–771, https://doi.org/10.5194/wcd-4-747-2023, https://doi.org/10.5194/wcd-4-747-2023, 2023
Short summary
Short summary
This study highlights how the sea ice variability in the Greenland Sea affects the terrestrial climate and the surface mass changes of peripheral glaciers of the Zackenberg region (ZR), Northeast Greenland, combining model output and observations. Our results show that the temporal evolution of sea ice influences the climate anomaly magnitude in the ZR. We also found that the changing temperature and precipitation patterns due to sea ice variability can affect the surface mass of the ice cap.
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023, https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Short summary
Frozen saline pore water, left over from post-glacial marine ingression, was found in shallow permafrost in a Svalbard fjord valley. This suggests that freezing occurred immediately after marine regression due to isostatic rebound. We conducted top-down freezing simulations, which confirmed that with Early to mid-Holocene temperatures (e.g. −4 °C), freezing could progress down to 20–40 m within 200 years. This, in turn, could inhibit flow through the sediment, therefore preserving saline fluids.
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
Xavier Morel, Birger Hansen, Christine Delire, Per Ambus, Mikhail Mastepanov, and Bertrand Decharme
Earth Syst. Sci. Data, 12, 2365–2380, https://doi.org/10.5194/essd-12-2365-2020, https://doi.org/10.5194/essd-12-2365-2020, 2020
Short summary
Short summary
Nuuk fen site is a well-instrumented Greenlandic site where soil physical variables and greenhouse gas fluxes are monitored. But knowledge of soil carbon stocks and profiles is missing. This is a crucial shortcoming for a complete evaluation of models. For the first time we measured soil carbon and nitrogen density, profiles, and stocks in the Nuuk peatland. This new dataset can contribute to further develop joint modeling of greenhouse gas emissions and soil carbon in land-surface models.
Cited articles
Abermann, J., Hansen, B., Lund, M., Wacker, S., Karami, M., and Cappelen,
J.: Hotspots and key periods of Greenland climate change during the past six
decades, Ambio, 46, 3–11, https://doi.org/10.1007/s13280-016-0861-y, 2017.
AMAP: AMAP assessment 2015: Methane as an Arctic climate forcer, Arctic
Monitoring and Assessment Programme (AMAP), Oslo, Norway, Oslo, Norway, 152
pp., 2015.
AMAP: Snow, Water and Permafrost in the Arctic (SWIPA) 2017, Oslo, Norway,
269 pp., 2017.
Andresen, C. G., Lara, M. J., Tweedie, C. E., and Lougheed, V. L.: Rising
plant-mediated methane emissions from arctic wetlands, Glob. Change
Biol., 23, 1128–1139, https://doi.org/10.1111/gcb.13469, 2017.
Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C., and Dise, N. B.:
Methane emissions from tundra environments in the Yukon-Kuskokwim delta,
Alaska, J. Geophys. Res., 97, 16645–16660, https://doi.org/10.1029/91jd00610, 1992.
Bay, C.: Vegetation mapping of Zackenberg valley, northeast Greenland,
Danish Polar Center and Botanical Museum, University of Copenhagen, 1998.
Bosse, U. and Frenzel, P.: CH4 emissions from a West Siberian mire, Suo,
52, 99–114, 2001.
Cable, S., Christiansen, H. H., Westergaard-Nielsen, A., Kroon, A., and
Elberling, B.: Geomorphological and cryostratigraphical analyses of the
Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans,
Geomorphology, 303, 504–523, https://doi.org/10.1016/j.geomorph.2017.11.003, 2018.
Christensen, T. R.: Methane emission from Arctic tundra, Biogeochemistry,
21, 117–139, https://doi.org/10.1007/bf00000874, 1993.
Christensen, T. R.: Climate science: Understand Arctic methane variability,
Nature, 509, 279–281, https://doi.org/10.1038/509279a, 2014.
Christensen, T. R., Friborg, T., Sommerkorn, M., Kaplan, J., Illeris, L.,
Søgaard, H., Nordstrøm, C., and Jonasson, S.: Trace gas exchange in a
high-arctic valley 1. Variations in CO2 and CH4 flux between tundra
vegetation types, Global Biogeochem. Cy., 14, 701–713, https://doi.org/10.1029/1999gb001134, 2000.
Christensen, T. R., Johansson, T. R., Akerman, H. J., Mastepanov, M.,
Malmer, N., Friborg, T., Crill, P., and Svensson, B. H.: Thawing sub-arctic
permafrost: Effects on vegetation and methane emissions, Geophys.
Res. Lett., 31, L04501, https://doi.org/10.1029/2003gl018680, 2004.
Christensen, T. R., Arndal, M. F., and Topp-Jørgensen, E.: Greenland
Ecosystem Monitoring Annual Report Cards 2019, DCE – Danish Centre for
Environment and Energy, Aarhus University, Aarhus, Denmark, 40 pp., 2020a.
Christensen, T. R., Lund, M., Skov, K., Abermann, J., López-Blanco, E.,
Scheller, J., Scheel, M., Jackowicz-Korczynski, M., Langley, K., Murphy, M.
J., and Mastepanov, M.: Multiple Ecosystem Effects of Extreme Weather Events
in the Arctic, Ecosystems, 24, 122–136, https://doi.org/10.1007/s10021-020-00507-6, 2020b.
Christiansen, H. H., Sigsgaard, C., Humlum, O., Rasch, M., and Hansen, B.
U.: Permafrost and Periglacial Geomorphology at Zackenberg, in: High-Arctic
Ecosystem Dynamics in a Changing Climate, Advances in Ecological Research,
151–174, Amsterdam, the Netherlands, 2008.
COWI: eBee saves the day: mapping Greenland's Zackenberg Research Station, available at:
https://www.sensefly.com/app/uploads/2017/11/eBee_saves_day_mapping_greenlands_zackenberg_research_station.pdf (last access: 23 June 2021), 2015.
Crill, P. M., Bartlett, K. B., Harriss, R. C., Gorham, E., Verry, E. S.,
Sebacher, D. I., Madzar, L., and Sanner, W.: Methane flux from Minnesota
peatlands, Global Biogeochem. Cy., 2, 371–384, https://doi.org/10.1029/gb002i004p00371, 1988.
Docherty, C. L., Hannah, D. M., Riis, T., Leth, S. R., and Milner, A. M.:
Large thermo-erosional tunnel for a river in northeast Greenland, Polar
Sci., 14, 83-87, https://doi.org/10.1016/j.polar.2017.08.001, 2017.
Ehhalt, D. H.: The atmospheric cycle of methane, Tellus, 26, 58–70, https://doi.org/10.3402/tellusa.v26i1-2.9737, 1974.
Elberling, B., Tamstorf, M. P., Michelsen, A., Arndal, M. F., Sigsgaard, C.,
Illeris, L., Bay, C., Hansen, B. U., Christensen, T. R., Hansen, E. S.,
Jakobsen, B. H., and Beyens, L.: Soil and Plant Community-Characteristics
and Dynamics at Zackenberg, in: Advances in Ecological Research: High-Arctic
Ecosystem Dynamics in a Changing Climate, Elsevier, Amsterdam, the Netherlands, 223–248, 2008.
Engram, M., Anthony, K. M. W., Sachs, T., Kohnert, K., Serafimovich, A.,
Grosse, G., and Meyer, F. J.: Remote sensing northern lake methane
ebullition, Nat. Clim. Change, 10, 511–517, https://doi.org/10.1038/s41558-020-0762-8, 2020.
Falk, J. M., Schmidt, N. M., and Ström, L.: Effects of simulated
increased grazing on carbon allocation patterns in a high arctic mire,
Biogeochemistry, 119, 229–244, https://doi.org/10.1007/s10533-014-9962-5, 2014.
Falk, J. M., Schmidt, N. M., Christensen, T. R., and Ström, L.: Large
herbivore grazing affects the vegetation structure and greenhouse gas
balance in a high arctic mire, Environ. Res. Lett., 10, 045001, https://doi.org/10.1088/1748-9326/10/4/045001, 2015.
Fan, S. M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., Anderson, S. M.,
Kebabian, P. L., McManus, J. B., Kolb, C. E., and Fitzjarrald, D. R.:
Micrometeorological measurements of CH4 and CO2 exchange between the
atmosphere and subarctic tundra, J. Geophys. Res., 97,
16627–16643, https://doi.org/10.1029/91jd02531, 1992.
Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj,
S. V., and Nicolsky, D.: Climate Change Drives Widespread and Rapid
Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic,
Geophys. Res. Lett., 46, 6681–6689, https://doi.org/10.1029/2019gl082187,
2019.
Friborg, T., Christensen, T. R., Hansen, B. U., Nordstrøm, C., and
Søgaard, H.: Trace gas exchange in a high-Arctic valley 2. Landscape CH4
fluxes measured and modeled using eddy correlation data, Global
Biogeochem. Cy., 14, 715–723, https://doi.org/10.1029/1999gb001136, 2000.
Geng, M. S., Christensen, J. H., and Christensen, T. R.: Potential future
methane emission hot spots in Greenland, Environ. Res. Lett., 14, 035001, https://doi.org/10.1088/1748-9326/aaf34b, 2019.
Greenland Ecosystem Monitoring: GeoBasis Zackenberg – Hydrology – AC_Water_level_automatic, Greenland Ecosystem Monitoring [data set], https://doi.org/10.17897/MJ7B-Z461, 2021a.
Greenland Ecosystem Monitoring: GeoBasis Zackenberg – Hydrology – AC_Water_level_manual, Greenland Ecosystem Monitoring [data set], https://doi.org/10.17897/6HCP-M521, 2021b.
Greenland Ecosystem Monitoring: ClimateBasis Zackenberg – Air temperature – Air temperature, 200 cm @ 60 min sample (∘C), Greenland Ecosystem Monitoring [data set], https://doi.org/10.17897/XV96-HC57, 2021c.
Greenland Ecosystem Monitoring: GeoBasis Zackenberg – Flux monitoring – AC, Greenland Ecosystem Monitoring [data set], https://doi.org/10.17897/430P-DS31, 2021d.
Greenland Ecosystem Monitoring: GeoBasis Zackenberg – Soil properties – Mix-1_Soil_moisture, Greenland Ecosystem Monitoring [data set], https://doi.org/10.17897/ENNB-T831, 2021e.
Greenland Ecosystem Monitoring: GeoBasis Zackenberg – Snow properties – Snow cover (Central area), Greenland Ecosystem Monitoring [data set], https://doi.org/10.17897/499C-H459, 2021f.
Greenland Ecosystem Monitoring: ClimateBasis Zackenberg – Soil temperature – Soil temperature, 20 cm – 60 min average (∘C), Greenland Ecosystem Monitoring [data set], https://doi.org/10.17897/XW7C-NA36, 2021g.
Grøndahl, L., Friborg, T., Christensen, T. R., Ekberg, A., Elberling, B.,
Illeris, L., Nordstrøm, C., Rennermalm, Å., Sigsgaard, C., and
Søgaard, H.: Spatial and inter-annual variability of trace gas fluxes in
a heterogeneous high-arctic landscape, in: Advances in Ecological Research:
High-Arctic Ecosystem Dynamics in a Changing Climate, Elsevier, Amsterdam, the Netherlands, 473–498,
2008.
Hartley, I. P., Hill, T. C., Wade, T. J., Clement, R. J., Moncrieff, J. B.,
Prieto-Blanco, A., Disney, M. I., Huntley, B., Williams, M., Howden, N. J.
K., Wookey, P. A., and Baxter, R.: Quantifying landscape-level methane
fluxes in subarctic Finland using a multiscale approach, Glob. Change
Biol., 21, 3712–3725, https://doi.org/10.1111/gcb.12975, 2015.
Heikkinen, J. E. P., Virtanen, T., Huttunen, J. T., Elsakov, V., and
Martikainen, P. J.: Carbon balance in East European tundra, Global
Biogeochem. Cy., 18, GB1023, https://doi.org/10.1029/2003gb002054, 2004.
IPCC: Climate Change The IPCC Scientific Assessment, Intergovernmental Panel
on Climate Change, Cambridge, 1990.
Jackowicz-Korczynski, M., Christensen, T. R., Bäckstrand, K., Crill, P.,
Friborg, T., Mastepanov, M., and Ström, L.: Annual cycle of methane
emission from a subarctic peatland, J. Geophys. Res., 115,
G02009, https://doi.org/10.1029/2008jg000913, 2010.
Joabsson, A. and Christensen, T. R.: Methane emissions from wetlands and
their relationship with vascular plants: an Arctic example, Glob. Change
Biol., 7, 919–932, https://doi.org/10.1046/j.1354-1013.2001.00044.x, 2001.
Jorgenson, M. T., Schur, Y. L., and Osterkamp, T. E.: Thermokarst in Alaska,
Ninth International Conference on Permafrost, Fairbanks, 869–876, 2008.
Jørgensen, C. J., Lund Johansen, K. M., Westergaard-Nielsen, A., and
Elberling, B.: Net regional methane sink in High Arctic soils of northeast
Greenland, Nat. Geosci., 8, 20–23, https://doi.org/10.1038/ngeo2305, 2015.
Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N., and Pfeiffer, E.-M.:
Methane production as key to the greenhouse gas budget of thawing
permafrost, Nat. Clim. Change, 8, 309–312, https://doi.org/10.1038/s41558-018-0095-z, 2018.
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research,
Permafrost Periglac. Process., 24, 108–119, https://doi.org/10.1002/ppp.1779,
2013.
Lewkowicz, A. G. and Way, R. G.: Extremes of summer climate trigger
thousands of thermokarst landslides in a High Arctic environment, Nat.
Commun., 10, 1329, https://doi.org/10.1038/s41467-019-09314-7, 2019.
Linnet, K.: Estimation of the linear relationship between the measurements
of two methods with proportional errors, Stat. Med., 9,
1463–1473, https://doi.org/10.1002/sim.4780091210, 1990.
Livingston, G. and Hutchinson, G.: Enclosure-based measurement of trace gas
exchange: applications and sources of error, in: Biogenic trace gases:
measuring emissions from soil and water, edited by: Matson, P. A. A. H.,
R.C., Blackwell Science Ltd., 14–51, Amsterdam, the Netherlands, 1995.
López-Blanco, E., Jackowicz-Korczynski, M. A., Mastepanov, M., Skov, K.,
Westergaard-Nielsen, A., Williams, M., and Christensen, T.: Multi-year
data-model evaluation reveals the importance of nutrient availability over
climate in arctic ecosystem C dynamics, Environ. Res. Lett., 15, 094007,
https://doi.org/10.1088/1748-9326/ab865b, 2020.
Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S., Ström,
L., Tamstorf, M. P., and Christensen, T. R.: Large tundra methane burst
during onset of freezing, Nature, 456, 628–630, https://doi.org/10.1038/nature07464,
2008.
Mastepanov, M., Sigsgaard, C., Tagesson, T., Ström, L., Tamstorf, M. P., Lund,
M., and Christensen, T. R.: Revisiting factors controlling methane emissions
from high-Arctic tundra, Biogeosciences, 10, 5139–5158, https://doi.org/10.5194/bg-10-5139-2013, 2013.
Mastepanov, M., Pirk, N., Lopez-Blanco, E., Skov, K., Rudd, D.,
Jackowicz-Korczynski, M., Tamstorf, M., Scheller, J., and Christensen, T.
R.: Fifteen years of methane flux measurements in high-arctic tundra, in
preparation, 2021.
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball,
J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M.,
and Yi, Y.: An assessment of the carbon balance of Arctic tundra: comparisons among
observations, process models, and atmospheric inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012, 2012.
Meltofte, H. and Rasch, M.: The Study Area at Zackenberg, in: Advances in
Ecological Research: High-Arctic Ecosystem Dynamics in a Changing Climate,
Elsevier, Amsterdam, the Netherlands, 101–110, 2008.
Meltofte, H., Christensen, T. R., Elberling, B., Forchhammer, M. C., and
Rasch, M.: Introduction, in: Advances in Ecological Research: High-Arctic
Ecosystem Dynamics in a Changing Climate, Elsevier, Amsterdam, the Netherlands, 1–12, 2008.
Morozumi, T., Shingubara, R., Suzuki, R., Kobayashi, H., Tei, S., Takano,
S., Fan, R., Liang, M., Maximov, T., and Sugimoto, A.: Estimating methane
emissions using vegetation mapping in the taiga–tundra boundary of a
north-eastern Siberian lowland, Tellus B,
71, 1581004, https://doi.org/10.1080/16000889.2019.1581004, 2019.
Morrissey, L. A. and Livingston, G. P.: Methane emissions from Alaska
Arctic tundra: An assessment of local spatial variability, J.
Geophys. Res.-Atmos., 97, 16661–16670, https://doi.org/10.1029/92jd00063,
1992.
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D.,
Michel, S. E., Myhre, C. L., Platt, M., Allen, G., Bousquet, P., Brownlow,
R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones, A. E.,
Levin, I., Manning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H., Warwick,
N. J., and White, J. W. C.: Very Strong. Atmospheric Methane Growth in the 4
Years 2014–2017: Implications for the paris Agreement, Global Biogeochem.
Cy., 33, 318–342, https://doi.org/10.1029/2018gb006009, 2019.
Oh, Y., Zhuang, Q. L., Liu, L. C., Welp, L. R., Lau, M. C. Y., Onstott, T.
C., Medvigy, D., Bruhwiler, L., Dlugokencky, E. J., Hugelius, G., D'Imperio,
L., and Elberling, B.: Reduced net methane emissions due to microbial
methane oxidation in a warmer Arctic, Nat. Clim. Change, 10, 317–321,
https://doi.org/10.1038/s41558-020-0734-z, 2020.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and McGuire, A. D.:
Environmental and physical controls on northern terrestrial methane
emissions across permafrost zones, Glob. Change Biol., 19, 589–603, https://doi.org/10.1111/gcb.12071, 2013.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P.,
McGuire, A. D., Romanovsky, V. E., Sannel, A. B., Schuur, E. A., and
Turetsky, M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes, Nat. Commun., 7, 13043, https://doi.org/10.1038/ncomms13043, 2016.
Parmentier, F., Van Huissteden, J., Van Der Molen, M., Schaepman-Strub, G.,
Karsanaev, S., Maximov, T., and Dolman, A.: Spatial and temporal dynamics in
eddy covariance observations of methane fluxes at a tundra site in
northeastern Siberia, J. Geophys. Res., 116, G03016, https://doi.org/10.1029/2010jg001637, 2011.
Pedersen, S. H., Tamstorf, M. P., Abermann, J., Westergaard-Nielsen, A.,
Lund, M., Skov, K., Sigsgaard, C., Mylius, M. R., Hansen, B. U., Liston, G.
E., and Schmidt, N. M.: Spatiotemporal Characteristics of Seasonal Snow
Cover in Northeast Greenland from in Situ Observations, Arct. Antarctic
Alp. Res., 48, 653–671, https://doi.org/10.1657/aaar0016-028, 2016.
Pirk, N., Mastepanov, M., Parmentier, F.-J. W., Lund, M., Crill, P., and Christensen, T. R.: Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations, Biogeosciences, 13, 903–912, https://doi.org/10.5194/bg-13-903-2016, 2016a.
Pirk, N., Tamstorf, M. P., Lund, M., Mastepanov, M., Pedersen, S. H.,
Mylius, M. R., Parmentier, F. J. W., Christiansen, H. H., and Christensen,
T. R.: Snowpack fluxes of methane and carbon dioxide from high Arctic
tundra, J. Geophys. Res.-Biogeo., 121, 2886–2900,
https://doi.org/10.1002/2016jg003486, 2016b.
QGIS.org: QGIS Geographic Information System v. 3.18.1, Open Source Geospatial Foundation Project, 2021.
R Core Team: R: A language and environment for statistical computing v. 4.0.2, R Foundation for Statistical Computing, 2021.
Roulet, N. T., Jano, A., Kelly, C., Klinger, L., Moore, T., Protz, R.,
Ritter, J., and Rouse, W.: Role of the Hudson Bay lowland as a source of
atmospheric methane, J. Geophys. Res.-Atmos., 99,
1439–1454, https://doi.org/10.1029/93jd00261, 1994.
Sachs, T., Wille, C., Boike, J., and Kutzbach, L.: Environmental controls on
ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta,
Siberia, J. Geophys. Res., 113, G00A03, https://doi.org/10.1029/2007jg000505,
2008.
Schneider, J., Grosse, G., and Wagner, D.: Land cover classification of
tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data
and its application for upscaling of methane emissions, Remote Sens.
Environ., 113, 380–391, https://doi.org/10.1016/j.rse.2008.10.013, 2009.
Schuur, E. A., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shakhova, N., Semiletov, I., Leifer, I., Sergienko, V., Salyuk, A., Kosmach,
D., Chernykh, D., Stubbs, C., Nicolsky, D., Tumskoy, V., and Gustafsson,
Ö.: Ebullition and storm-induced methane release from the East Siberian
Arctic Shelf, Nat. Geosci., 7, 64–70, https://doi.org/10.1038/ngeo2007, 2014.
Stiegler, C., Lund, M., Christensen, T. R., Mastepanov, M., and Lindroth, A.: Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem, The Cryosphere, 10, 1395–1413, https://doi.org/10.5194/tc-10-1395-2016, 2016.
Ström, L., Ekberg, A., Mastepanov, M., and Christensen, T. R.: The
effect of vascular plants on carbon turnover and methane emissions from a
tundra wetland, Glob. Change Biol., 9, 1185–1192, https://doi.org/10.1046/j.1365-2486.2003.00655.x, 2003.
Ström, L., Tagesson, T., Mastepanov, M., and Christensen, T. R.:
Presence of Eriophorum scheuchzeri enhances substrate availability and
methane emission in an Arctic wetland, Soil Biol. Biochem., 45, 61–70, https://doi.org/10.1016/j.soilbio.2011.09.005, 2012.
Ström, L., Falk, J. M., Skov, K., Jackowicz-Korczynski, M., Mastepanov,
M., Christensen, T. R., Lund, M., and Schmidt, N. M.: Controls of spatial
and temporal variability in CH4 flux in a high arctic fen over three years,
Biogeochemistry, 125, 21–35, https://doi.org/10.1007/s10533-015-0109-0, 2015.
Svensson, B. H. and Rosswall, T.: In situ Methane Production from Acid Peat
in Plant Communities with Different Moisture Regimes in a Subarctic Mire,
Oikos, 43, 341–350, https://doi.org/10.2307/3544151, 1984.
Søgaard, H., Nordstrøm, C., Friborg, T., and Hansen, B. U.: Trace gas
exchange in a high-arctic valley 3. Integrating and scaling CO2 fluxes from
canopy to landscape using flux data, footprint modeling, and remote sensing,
Global Biogeochem. Cy., 14, 725–744, https://doi.org/10.1029/1999gb001137, 2000.
Søndergaard, J., Tamstorf, M., Elberling, B., Larsen, M. M., Mylius, M.
R., Lund, M., Abermann, J., and Rigét, F.: Mercury exports from a
High-Arctic river basin in Northeast Greenland (74∘ N) largely
controlled by glacial lake outburst floods, Sci. Total
Environ., 514, 83–91, https://doi.org/10.1016/j.scitotenv.2015.01.097, 2015.
Tagesson, T., Molder, M., Mastepanov, M., Sigsgaard, C., Tamstorf, M. P.,
Lund, M., Falk, J. M., Lindroth, A., Christensen, T. R., and Ström, L.:
Land-atmosphere exchange of methane from soil thawing to soil freezing in a
high-Arctic wet tundra ecosystem, Glob. Change Biol., 18, 1928–1940, https://doi.org/10.1111/j.1365-2486.2012.02647.x, 2012.
Tagesson, T., Mastepanov, M., Mölder, M., Tamstorf, M. P., Eklundh, L.,
Smith, B., Sigsgaard, C., Lund, M., Ekberg, A., Falk, J. M., Friborg, T.,
Christensen, T. R., and Ström, L.: Modelling of growing season methane
fluxes in a high-Arctic wet tundra ecosystem 1997–2010 using in situ and
high-resolution satellite data, Tellus B,
65, https://doi.org/10.3402/tellusb.v65i0.19722, 2013.
Taylor, M. A., Celis, G., Ledman, J. D., Bracho, R., and Schuur, E. A. G.:
Methane Efflux Measured by Eddy Covariance in Alaskan Upland Tundra
Undergoing Permafrost Degradation, J. Geophys. Res.-Biogeo., 123, 2695–2710, https://doi.org/10.1029/2018jg004444, 2018.
Thornton, B. F., Prytherch, J., Andersson, K., Brooks, I. M., Salisbury, D.,
Tjernström, M., and Crill, P. M.: Shipborne eddy covariance observations
of methane fluxes constrain Arctic sea emissions, Sci. Adv., 6,
eaay7934, https://doi.org/10.1126/sciadv.aay7934, 2020.
Tomczyk, A. M. and Ewertowski, M. W.: UAV-based remote sensing of immediate
changes in geomorphology following a glacial lake outburst flood at the
Zackenberg river, northeast Greenland, J. Maps, 16, 86–100, https://doi.org/10.1080/17445647.2020.1749146, 2020.
Tomczyk, A. M., Ewertowski, M. W., and Carrivick, J. L.: Geomorphological
impacts of a glacier lake outburst flood in the high arctic Zackenberg
River, NE Greenland, J. Hydrol., 591, 125300, https://doi.org/10.1016/j.jhydrol.2020.125300, 2020.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D.,
Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence,
D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release
through abrupt permafrost thaw, Nat. Geosci., 13, 138–145, https://doi.org/10.1038/s41561-019-0526-0, 2020.
Walter Anthony, K., Schneider von Deimling, T., Nitze, I., Frolking, S.,
Emond, A., Daanen, R., Anthony, P., Lindgren, P., Jones, B., and Grosse, G.:
21st-century modeled permafrost carbon emissions accelerated by abrupt thaw
beneath lakes, Nat. Commun., 9, 3262, https://doi.org/10.1038/s41467-018-05738-9, 2018.
Westermann, S., Elberling, B., Højlund Pedersen, S., Stendel, M., Hansen, B. U., and Liston, G. E.: Future permafrost conditions along environmental gradients in Zackenberg, Greenland, The Cryosphere, 9, 719–735, https://doi.org/10.5194/tc-9-719-2015, 2015.
Whalen, S. C. and Reeburgh, W. S.: A methane flux time series for tundra
environments, Global Biogeochem. Cy., 2, 399–409, https://doi.org/10.1029/gb002i004p00399, 1988.
Wickland, K. P., Jorgenson, M. T., Koch, J. C., Kanevskiy, M., and Striegl,
R. G.: Carbon dioxide and methane flux in a dynamic Arctic tundra landscape:
Decadal-scale impacts of ice-wedge degradation and stabilization,
Geophys. Res. Lett., 47, e2020GL089894, https://doi.org/10.1029/2020gl089894,
2020.
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.:
Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99–106, https://doi.org/10.1038/ngeo2578, 2016.
Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E. M.: Methane
emission from Siberian arctic polygonal tundra: eddy covariance measurements
and modeling, Glob. Change Biol., 14, 1395–1408, https://doi.org/10.1111/j.1365-2486.2008.01586.x, 2008.
Short summary
Our study presents a time series of methane emissions in a high-Arctic-tundra landscape over 14 summers, which shows large variations between years. The methane emissions from the valley are expected to more than double in the late 21st century. This warming increases permafrost thaw, which could increase surface erosion in the valley. Increased erosion could offset some of the rise in methane fluxes from the valley, but this would require large-scale impacts on vegetated surfaces.
Our study presents a time series of methane emissions in a high-Arctic-tundra landscape over 14...
Altmetrics
Final-revised paper
Preprint