Articles | Volume 18, issue 23
https://doi.org/10.5194/bg-18-6093-2021
https://doi.org/10.5194/bg-18-6093-2021
Research article
 | 
29 Nov 2021
Research article |  | 29 Nov 2021

Methane in Zackenberg Valley, NE Greenland: multidecadal growing season fluxes of a high-Arctic tundra

Johan H. Scheller, Mikhail Mastepanov, Hanne H. Christiansen, and Torben R. Christensen

Related authors

Plant community composition controls spatial variation in year-round methane fluxes in a boreal rich fen
Eeva Järvi-Laturi, Teemu Tahvanainen, Eero Koskinen, Efrén López-Blanco, Juho Lämsä, Hannu Marttila, Mikhail Mastepanov, Riku Paavola, Maria Väisänen, and Torben Røjle Christensen
EGUsphere, https://doi.org/10.5194/egusphere-2025-217,https://doi.org/10.5194/egusphere-2025-217, 2025
Short summary
InSAR sensitivity to active layer ground ice content in Adventdalen, Svalbard
Lotte Wendt, Line Rouyet, Hanne H. Christiansen, Tom Rune Lauknes, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2972,https://doi.org/10.5194/egusphere-2024-2972, 2024
Short summary
Developing the Svalbard Integrated Arctic Earth Observing System (SIOS)
Hanne H. Christiansen, Ilkka S. O. Matero, Lisa Baddeley, Kim Holmén, Clara J. M. Hoppe, Maarten J. J. E. Loonen, Rune Storvold, Vito Vitale, Agata Zaborska, and Heikki Lihavainen
Earth Syst. Dynam., 15, 933–946, https://doi.org/10.5194/esd-15-933-2024,https://doi.org/10.5194/esd-15-933-2024, 2024
Short summary
The importance of regional sea-ice variability for the coastal climate and near-surface temperature gradients in Northeast Greenland
Sonika Shahi, Jakob Abermann, Tiago Silva, Kirsty Langley, Signe Hillerup Larsen, Mikhail Mastepanov, and Wolfgang Schöner
Weather Clim. Dynam., 4, 747–771, https://doi.org/10.5194/wcd-4-747-2023,https://doi.org/10.5194/wcd-4-747-2023, 2023
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Modelling decadal trends and the impact of extreme events on carbon fluxes in a temperate deciduous forest using a terrestrial biosphere model
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
Biogeosciences, 22, 1781–1807, https://doi.org/10.5194/bg-22-1781-2025,https://doi.org/10.5194/bg-22-1781-2025, 2025
Short summary
Surface CO2 gradients challenge conventional CO2 emission quantification in lentic water bodies under calm conditions
Patrick Aurich, Uwe Spank, and Matthias Koschorreck
Biogeosciences, 22, 1697–1709, https://doi.org/10.5194/bg-22-1697-2025,https://doi.org/10.5194/bg-22-1697-2025, 2025
Short summary
Spatiotemporal variability of CO2, N2O and CH4 fluxes from a semi-deciduous tropical forest soil in the Congo Basin
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 22, 1529–1542, https://doi.org/10.5194/bg-22-1529-2025,https://doi.org/10.5194/bg-22-1529-2025, 2025
Short summary
Eddy-covariance fluxes of CO2, CH4 and N2O in a drained peatland forest after clear-cutting
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martínez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
Biogeosciences, 22, 1277–1300, https://doi.org/10.5194/bg-22-1277-2025,https://doi.org/10.5194/bg-22-1277-2025, 2025
Short summary
Eddy covariance evaluation of ecosystem fluxes at a temperate saltmarsh in Victoria, Australia, shows large CO2 uptake
Ruth Reef, Edoardo Daly, Tivanka Anandappa, Eboni-Jane Vienna-Hallam, Harriet Robertson, Matthew Peck, and Adrien Guyot
Biogeosciences, 22, 1149–1162, https://doi.org/10.5194/bg-22-1149-2025,https://doi.org/10.5194/bg-22-1149-2025, 2025
Short summary

Cited articles

Abermann, J., Hansen, B., Lund, M., Wacker, S., Karami, M., and Cappelen, J.: Hotspots and key periods of Greenland climate change during the past six decades, Ambio, 46, 3–11, https://doi.org/10.1007/s13280-016-0861-y, 2017. 
AMAP: AMAP assessment 2015: Methane as an Arctic climate forcer, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, Oslo, Norway, 152 pp., 2015. 
AMAP: Snow, Water and Permafrost in the Arctic (SWIPA) 2017, Oslo, Norway, 269 pp., 2017. 
Andresen, C. G., Lara, M. J., Tweedie, C. E., and Lougheed, V. L.: Rising plant-mediated methane emissions from arctic wetlands, Glob. Change Biol., 23, 1128–1139, https://doi.org/10.1111/gcb.13469, 2017. 
Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C., and Dise, N. B.: Methane emissions from tundra environments in the Yukon-Kuskokwim delta, Alaska, J. Geophys. Res., 97, 16645–16660, https://doi.org/10.1029/91jd00610, 1992. 
Download
Short summary
Our study presents a time series of methane emissions in a high-Arctic-tundra landscape over 14 summers, which shows large variations between years. The methane emissions from the valley are expected to more than double in the late 21st century. This warming increases permafrost thaw, which could increase surface erosion in the valley. Increased erosion could offset some of the rise in methane fluxes from the valley, but this would require large-scale impacts on vegetated surfaces.
Share
Altmetrics
Final-revised paper
Preprint