Articles | Volume 19, issue 8
https://doi.org/10.5194/bg-19-2273-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2273-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Toward estimation of seasonal water dynamics of winter wheat from ground-based L-band radiometry: a concept study
Thomas Jagdhuber
CORRESPONDING AUTHOR
German Aerospace Center, Microwaves and Radar Institute,
Münchener Strasse 20, 82234 Wessling, Germany
Institute of Geography, University of Augsburg, Alter Postweg 118,
86159 Augsburg, Germany
François Jonard
Earth Observation and Ecosystem Modelling lab, SPHERES research unit, Université de Liège (ULiege), Allée du Six Août 19, 4000 Liège, Belgium
Anke Fluhrer
German Aerospace Center, Microwaves and Radar Institute,
Münchener Strasse 20, 82234 Wessling, Germany
Institute of Geography, University of Augsburg, Alter Postweg 118,
86159 Augsburg, Germany
David Chaparro
German Aerospace Center, Microwaves and Radar Institute,
Münchener Strasse 20, 82234 Wessling, Germany
Universitat Politècnica de Catalunya, CommSensLab and IEEC/UPC,
Jordi Girona 1–3, 08034 Barcelona, Spain
Martin J. Baur
University of Cambridge, Department of Geography, Downing Place, CB2 3EN Cambridge, UK
Thomas Meyer
Agrosphere (IBG-3), Institute of Bio- and Geosciences,
Forschungszentrum Jülich GmbH,
52428 Jülich, Germany
María Piles
Image Processing Lab, Universitat de València, 46980 Valencia,
Spain
Related authors
Anke Fluhrer, Martin J. Baur, María Piles, Bagher Bayat, Mehdi Rahmati, David Chaparro, Clémence Dubois, Florian M. Hellwig, Carsten Montzka, Angelika Kübert, Marlin M. Mueller, Isabel Augscheller, Francois Jonard, Konstantin Schellenberg, and Thomas Jagdhuber
Biogeosciences, 22, 3721–3746, https://doi.org/10.5194/bg-22-3721-2025, https://doi.org/10.5194/bg-22-3721-2025, 2025
Short summary
Short summary
This study compares established evapotranspiration products in central Europe and evaluates their multi-seasonal performance during wet and drought phases in 2017–2020 together with important soil–plant–atmosphere drivers. Results show that SEVIRI, ERA5-land, and GLEAM perform best compared to ICOS (Integrated Carbon Observation System) measurements. During moisture-limited drought years, ET (evapotranspiration) decreases due to decreasing soil moisture and increasing vapor pressure deficit, while in other years ET is mainly controlled by VPD (vapor pressure deficit).
M. M. Mueller, C. Dubois, T. Jagdhuber, C. Pathe, and C. Schmullius
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 127–134, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-127-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-127-2021, 2021
Anke Fluhrer, Martin J. Baur, María Piles, Bagher Bayat, Mehdi Rahmati, David Chaparro, Clémence Dubois, Florian M. Hellwig, Carsten Montzka, Angelika Kübert, Marlin M. Mueller, Isabel Augscheller, Francois Jonard, Konstantin Schellenberg, and Thomas Jagdhuber
Biogeosciences, 22, 3721–3746, https://doi.org/10.5194/bg-22-3721-2025, https://doi.org/10.5194/bg-22-3721-2025, 2025
Short summary
Short summary
This study compares established evapotranspiration products in central Europe and evaluates their multi-seasonal performance during wet and drought phases in 2017–2020 together with important soil–plant–atmosphere drivers. Results show that SEVIRI, ERA5-land, and GLEAM perform best compared to ICOS (Integrated Carbon Observation System) measurements. During moisture-limited drought years, ET (evapotranspiration) decreases due to decreasing soil moisture and increasing vapor pressure deficit, while in other years ET is mainly controlled by VPD (vapor pressure deficit).
Louis Delval, Jordan Bates, François Jonard, and Mathieu Javaux
Biogeosciences, 22, 513–534, https://doi.org/10.5194/bg-22-513-2025, https://doi.org/10.5194/bg-22-513-2025, 2025
Short summary
Short summary
The accurate quantification of grapevine water status is crucial for winemakers as it significantly impacts wine quality. It is acknowledged that within a single vineyard, the variability of grapevine water status can be significant. The within-field spatial distribution of soil hydraulic conductance and weather conditions are the primary factors governing the leaf water potential spatial heterogeneity and extent observed in non-irrigated vineyards, and their effects are concomitant.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
M. M. Mueller, C. Dubois, T. Jagdhuber, C. Pathe, and C. Schmullius
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 127–134, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-127-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-127-2021, 2021
M. M. Salvia, N. Sánchez, M. Piles, A. Gonzalez-Zamora, and J. Martínez-Fernández
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 53–58, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-53-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-53-2020, 2020
Cited articles
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus form approximation of
saturation vapor pressure, J. Appl. Meteorol., 35, 601–609,
1996.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration-Guidelines for computing crop water requirements-FAO
Irrigation and drainage paper 56, FAO, Rome, 300, D05109, ISBN 92-5-104219-5, 1998.
Blizzard, W. E. and Boyer, J. S.: Comparative resistance of the soil and the
plant to water transport, Plant Physiol., 66, 809–814, 1980.
Bonan, G. B., Williams, M., Fisher, R. A., and Oleson, K. W.: Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum, Geosci. Model Dev., 7, 2193–2222, https://doi.org/10.5194/gmd-7-2193-2014, 2014.
Brooks, R. H. and Corey, A. T.: Properties of porous media affecting fluid
flow, J. Irrig. Drain. Div., 92, 61–90, 1964.
Bruns, H. A. and Croy, L. I.: Key developmental stages of winter wheat,
Triticum aestivum, Econ. Bot., 37, 410–417, 1983.
Cai, G., Vanderborght, J., Langensiepen, M., Schnepf, A., Hüging, H., and Vereecken, H.: Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions, Hydrol. Earth Syst. Sci., 22, 2449–2470, https://doi.org/10.5194/hess-22-2449-2018, 2018.
Campbell, G.: A simple method for determining unsaturated conductivity from
moisture retention data, Soil Sci., 117, 311–314, 1974.
Castellvi, F., Perez, P. J., Villar, J. M., and Rosell, J. I.: Analysis of
methods for estimating vapor pressure deficits and relative humidity,
Agr. Forest Meteorol., 82, 29–45, 1996.
Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R.,
and Medlyn, B. E.: Triggers of tree mortality under drought, Nature,
558, 531–539, 2018.
Choudhury, B. J. and Idso, S. B.: An empirical model for stomatal resistance
of field-grown wheat, Agr. Forest Meteorol., 36, 65–82,
1985a.
Choudhury, B. J. and Idso, S. B.: Evaluating plant and canopy resistances
of field-grown wheat from concurrent diurnal observations of leaf water
potential, stomatal resistance, canopy temperature, and evapotranspiration
flux, Agr. Forest Meteorol., 34, 67–76, 1985b.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil
hydraulic properties, Water Resour. Res. 14, 601–604, 1978.
Cowan, I. R.: Transport of water in the soil-plant-atmosphere system,
J. Appl. Ecol., 2, 221–239, 1965.
Curtis, B. C., Rajaram, S., and Gómez Macpherson, H.: Bread wheat:
improvement and production, Food and Agriculture Organization of the United
Nations (FAO), Report, edited by: Curtis, B. C., Rajaram, S., and Gómez Macpherson, H., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, ISBN 9251048096,
2002.
Damour, G., Simonneau, T., Cochard, H., and Urban, L.: An overview of models
of stomatal conductance at the leaf level, Plant Cell Environ.,
33, 1419–1438, 2010.
Dingman, S. L.: Physical hydrology, Waveland Press, Long Grove, USA, ISBN 9781478611189, 2015.
Du, J., Kimball, J. S., and Jones, L. A.: Passive microwave remote sensing
of soil moisture based on dynamic vegetation scattering properties for
AMSR-E, IEEE Trans. Geosci. Remote Sens., 54, 597–608,
2015.
Dutt, S. K. and Gill, K. S.: Diurnal changes in leaf water potential of
rice, barley and wheat, Biol. Plantarum, 20, 472–474, 1978.
Duursma, R. A., Blackman, C. J., Lopéz, R., Martin-StPaul, N. K.,
Cochard, H., and Medlyn, B. E.: On the minimum leaf conductance: its role in
models of plant water use, and ecological and environmental controls, New
Phytol., 221, 693–705, 2019.
Eamus, D., Huete, A., and Yu, Q.: Vegetation dynamics, Cambridge University
Press, UK, ISBN 9781107054202, 2016.
Elfving, D. C., Kaufmann, M. R., and Hall, A. E.: Interpreting leaf water
potential measurements with a model of the soil-plant-atmosphere continuum,
Physiol. Plantarum, 27, 161–168, 1972.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L., and Van Zyl, J.: The soil moisture active passive (SMAP) mission,
Proc. IEEE, 98, 704–716, 2010.
Fan, J., McConkey, B., Wang, H., and Janzen, H.: Root distribution by depth
for temperate agricultural crops, Field Crops Res., 189, 68–74, 2016.
Feddes, R. A. and Rijtema, P. E.: Water withdrawal by plant roots, J. Hydrol., 17, 33–59, 1972.
Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D., and
Entekhabi, D.: Land-atmosphere drivers of landscape-scale plant water
content loss, Geophys. Res. Lett., 47, e2020GL09033, https://doi.org/10.1029/2020GL090331, 2021.
Fink, A., Jagdhuber, T., Piles, M., Grant, J., Baur, M., Link, M., and
Entekhabi, D.: Estimating Gravimetric Moisture of Vegetation Using an
Attenuation-Based Multi-Sensor Approach, In IGARSS 2018–2018 IEEE
International Geoscience and Remote Sensing Symposium, 353–356, IEEE, https://doi.org/10.1109/IGARSS.2018.8518949, 2018.
Frank, A. B., Power, J. F., and Willis, W. O.: Effect of Temperature and Plant
Water Stress on Photosynthesis, Diffusion Resistance, and Leaf Water
Potential in Spring Wheat, Agron. J., 65, 777–780, 1973.
Gallardo, M., Eastham, J., Gregory, P. J., and Turner, N. C.: A comparison of
plant hydraulic conductances in wheat and lupins, J. Exp.
Bot., 47, 233–239, 1996.
Gardner, W. R.: Dynamic aspects of water availability to plants, Soil
Sci., 89, 63–73, 1960.
Gardner, W. R.: Dynamic aspects of soil-water availability to plants, Ann.
Rev. Plant Physiol., 16, 323–342, 1965.
Gupta, A. S., Berkowitz, G. A., and Pier, P. A.: Maintenance of
photosynthesis at low leaf water potential in wheat: role of potassium
status and irrigation history, Plant Physiol., 89, 1358–1365, 1989.
Gupta, S. C. and Wang, D.: Water Retention in Soil, in: Encyclopedia of Soil
Science, edited by: Lal, R., CRC Press, Taylor and Francis Group, Boca Raton, FL,
USA, Taylor and Francis Group, ISBN 9780849350542, 2006.
Halverson, G. H., Fisher, J. B., and Lee, C. M.: ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station (ECOSTRESS), Mission Level 3
Evapotranspiration Priestley-Taylor Jet Propulsion Laboratory (PT-JPL), Data
User Guide D-57153, Version 2, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, United States, 1–18, JPL, https://lpdaac.usgs.gov/documents/424/ECO3ETPTJPL_User_Guide_V1.pdf (last access: 23 April 2022), 2019.
Hillel, D.: Fundamentals of soil physics, Academic Press, New York, https://doi.org/10.1016/C2009-0-03109-2, 1980.
Holtzman, N. M., Anderegg, L. D. L., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C., Cosh, M. H., Langlois, A., Lakhankar, T., Tesser, D., Steiner, N., Colliander, A., Roy, A., and Konings, A. G.: L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand, Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, 2021.
Hook, S. and Fisher, J.: ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70,m V001 [data set], NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001, 2019.
Horning, N., Robinson, J. A., Sterling, E. J., Spector, S., and Turner, W.:
Remote sensing for ecology and conservation: a handbook of techniques,
Oxford University Press, ISBN 9780199219957, 2010.
Humphrey, V., Dorsey, B. L., and Frankenberg, C.: Continuous observation of canopy water content changes with GPS sensors, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-15551, https://doi.org/10.5194/egusphere-egu21-15551, 2021.
Jackson, T. J. and Schmugge, T. J.: Vegetation effects on the microwave
emission of soils, Remote Sens. Environ., 36, 203–212, 1991.
Jagdhuber, T.: Soil parameter retrieval under vegetation cover using SAR
polarimetry, Doctoral dissertation, Universität Potsdam, urn:nbn:de:kobv:517-opus-60519, https://publishup.uni-potsdam.de/frontdoor/index/index/docId/5894 (last access: 25 April 2022), 2012.
Jagdhuber, T., Fluhrer, A., Jonard, F., Chaparro, D., Meyer, T., Holtzman,
N., Konings, A.G., Feldman, A., Baur, M. J., Piles, M., and Entekhabi, D.:
Retrieval of Forest Water Potential from L-Band Vegetation Optical Depth, in:
International Geoscience and Remote Sensing Symposium (IGARSS), Proceedings of the IEEE International Geoscience and Remote Sensing Symposium,
Brussels, Belgium, 12–16 July 2021, 5949–5952, https://doi.org/10.1109/IGARSS47720.2021.9554622,
2021.
Johnson, K. M., Jordan, G. J., and Brodribb, T. J.: Wheat leaves embolized
by water stress do not recover function upon rewatering, Plant Cell
Environ., 41, 2704–2714, 2018.
Jonard, F., Weihermüller, L., Schwank, M., Jadoon, K. Z., Vereecken, H.,
and Lambot, S.: Estimation of hydraulic properties of a sandy soil using
ground-based active and passive microwave remote sensing, IEEE Trans.
Geosci. Remote Sens., 53, 3095–3109, 2015.
Jonard, F., Bircher, S., Demontoux, F., Weihermüller, L.,
Razafindratsima, S., Wigneron, J. P., and Vereecken H.: Passive L-band
microwave remote sensing of organic soil surface layers: a tower-based
experiment, Remote Sens., 10, 108088,
https://doi.org/10.1016/j.agrformet.2020.108088, 2018.
Jonard F., De Cannière S., Brüggemann N., Gentine P., Short Gianotti
D. J., Lobet G., Miralles D. J., Montzka C., Pagán B. R., Rascher U.,
and Vereecken H.: Value of chlorophyll fluorescence for quantifying
hydrological states and fluxes: Current status and challenges, Agr.
Forest Meteorol., 291, 108088,
https://doi.org/10.1016/j.agrformet.2020.108088, 2020.
Kameli, A. and Lösel, D. M.: Carbohydrates and water status in wheat
plants under water stress, New Phytol., 125, 609–614, 1993.
Kang, S., Gu, B., Du, T., and Zhang, J.: Crop coefficient and ratio of
transpiration to evapotranspiration of winter wheat and maize in a
semi-humid region, Agr. Water Manage., 59, 239–254, 2003.
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F.,
Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., Gruhier, C., Enache Juglea, S., Drinkwater, M. R., Hahne, A., Martin-Neira, M., and Mecklenburg, S.: The SMOS mission: New tool for monitoring key elements
of the global water cycle, Proc. IEEE, 98, 666–687, 2010.
Kilic, L., Prigent, C., Aires, F., Boutin, J., Heygster, G., Tonboe, R. T., Roquet, H., Jimenez, C., and Donlon, C.: Expected performances of the Copernicus Imaging Microwave
Radiometer (CIMR) for an all-weather and high spatial resolution estimation
of ocean and sea ice parameters, J. Geophys. Res.-Ocean.,
123, 7564–7580, 2018.
Konings, A. G., Piles, M., Das, N., and Entekhabi, D.: L-band vegetation
optical depth and effective scattering albedo estimation from SMAP, Remote
Sens. Environ., 198, 460–470, 2017.
Konings, A. G., Rao, K., and Steele-Dunne, S. C.: Macro to micro: microwave
remote sensing of plant water content for physiology and ecology, New
Phytol., 223, 1166–1172, 2019.
Konings, A. G., Saatchi, S. S., Frankenberg, C., Keller, M., Leshyk, V.,
Anderegg, W. R., Humphrey, V., Matheny, A. M., Trugman, A., Sack, L., Agee,
E., Barnes, M. L., Binks, O., Nicholson, K. C., Christoffersen, B. O.,
Entekhabi, D., Gentine, P., Holtzman, N. M., Katul, G. G., Liu, Y., Longo, M.,
Martinez-Vilalta, J., McDowell, N., Meir, P., Mencuccini, M., Mrad, A., Novick, K. A., Oliveira, R. S., Siqueira, P., Steele-Dunne, S. C., Thompson, D. R., Wang, Y., Wehr, R., Wood, J. D., Xu, X., and Zuidema, P. A.: Detecting forest response to droughts with
global observations of vegetation water content, Glob. Change Biol., 27,
6005–6024, 2021.
Lambers, H., Stuart Chapin III, F., and Pons T. L.: Plant physiological
ecology, Springer Science and Business Media, ISBN 9783030296391, 2008.
Liu, X., Wigneron, J. P., Fan, L., Frappart, F., Ciais, P., Baghdadi, N.,
Zribi, M., Jagdhuber, T., Li, X., Wang, M., Bai, X., and Moisy, C.: ASCAT
IB: A radar-based vegetation optical depth retrieved from the ASCAT
scatterometer satellite, Remote Sens. Environ., 264, 112587, https://doi.org/10.1016/j.rse.2021.112587, 2021.
Lynn, B. H. and Carlson, T. N.: A stomatal resistance model illustrating
plant vs. external control of transpiration, Agr. Forest
Meteorol., 52, 5–43, 1990.
Mätzler, C.: Microwave (1–100 GHz) dielectric model of leaves, IEEE
Trans. Geosci. Remote Sens., 32, 947–949, 1994.
Manzoni, S., Vico, G., Porporato, A., and Katul, G.: Biological constraints
on water transport in the soil-plant-atmosphere system, Adv. Water
Res., 51, 292–304, 2013a.
Manzoni, S., Vico, G., Katul, G., Palmroth, S., Jackson, R. B., and
Porporato, A.: Hydraulic limits on maximum plant transpiration and the
emergence of the safety–efficiency trade-off, New Phytol., 198,
169–178, 2013b.
Manzoni, S., Vico, G., Katul, G., Palmroth, S., and Porporato, A.: Optimal
plant water-use strategies under stochastic rainfall, Water Resour.
Res., 50, 5379–5394, 2014.
Margulis, S. A.: Introduction to hydrology, https://ucla.app.box.com/v/Intro-to-Hydrology-pdf (last access: 20 April 2022), 2017.
Martínez-Vilalta, J. and Garcia-Forner, N.: Water potential
regulation, stomatal behaviour and hydraulic transport under drought:
deconstructing the iso/anisohydric concept, Plant Cell Environ.,
40, 962–976, 2017.
Martínez-Vilalta, J., Anderegg, W. R., Sapes, G., and Sala, A.: Greater
focus on water pools may improve our ability to understand and anticipate
drought-induced mortality in plants, New Phytol., 223, 22–32, 2019.
Matheny, A. M., Mirfenderesgi, G., and Bohrer, G.: Trait-based
representation of hydrological functional properties of plants in weather
and ecosystem models, Plant Div., 39, 1–12, 2017.
Meyer, T., Weihermüller, L., Vereecken, H., and Jonard, F.: Vegetation
Optical Depth and Soil Moisture Retrieved from L-Band Radiometry over the
Growth Cycle of a Winter Wheat, Remote Sens., 10, 1637, https://doi.org/10.3390/rs10101637, 2018.
Meyer, T., Jagdhuber, T., Piles, M., Fink, A., Grant, J., Vereecken, H., and
Jonard, F.: Estimating Gravimetric Water Content of a Winter Wheat Field
from L-Band Vegetation Optical Depth, Remote Sens., 11,
2353, https://doi.org/10.3390/rs11202353, 2019.
Momen, M. and Bou-Zeid, E.: Analytical reduced models for non-stationary
diabatic atmospheric boundary layers, Bound.-Lay. Meteorol., 164,
383–399, https://doi.org/10.1007/s10546-017-0247-0, 2017.
Momen, M., Wood, J. D., Novick, K. A., Pangle, R., Pockman, W. T., McDowell,
N. G., and Konings, A. G.: Interacting effects of leaf water potential and
biomass on vegetation optical depth, J. Geophys. Res.-Biogeo., 122, 3031–3046, 2017.
Monteith, J. and Unsworth, M.: Principles of environmental physics: plants,
animals, and the atmosphere, Academic Press, Cambridge, USA, ISBN 9780123869104, 2013.
Monteith, J. L.: Evaporation and environment, in: Symposia of the society for
experimental biology, Cambridge University Press (CUP),
Cambridge, 19, 205–234, 1965.
Nobel, P. S.: Physicochemical and Environmental Plant Physiology, Academic
Press, Cambridge, USA, ISBN 9780128191460, 2020.
Oosterhuis, D. M. and Walker, S.: Stomatal resistance measurement as an
indicator of water deficit stress in wheat and soybeans, South Afr.
J. Plant Soil, 4, 113–120, 1987.
Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M.,
Olesen, J. E., Patil, R.H., Ruget, F., Rumbaur, C., Takáč, J., Trnka, M., Bindi, M., Çaldağ, B., Ewert, F., Ferrise, R., Mirschel, W., Şaylan, L., Šiška, B., and Rötter, R.: Simulation of winter wheat yield and its variability
in different climates of Europe: a comparison of eight crop growth models,
Europ. J. Agr., 35, 103–114, 2011.
Passioura, J. B.: Water in the soil-plant-atmosphere continuum, in:
Physiological plant ecology II (5-33), Springer, Berlin, Heidelberg, Springer,https://doi.org/10.1007/978-3-642-68150-9_2, 1982.
Pearcy, R. W., Ehleringer, J. R., Mooney, H., and Rundel, P. W. (Eds.):
Plant physiological ecology: field methods and instrumentation, Springer
Science and Business Media, Kluwer Academic Publishers, Dortrecht, the Netherlands, https://doi.org/10.1007/978-94-010-9013-1, 2012.
Portal, G., Jagdhuber, T., Vall-llossera, M., Camps, A., Pablos, M.,
Entekhabi, D., and Piles, M.: Assessment of Multi-Scale SMOS and SMAP Soil
Moisture Products across the Iberian Peninsula, Remote Sens., 12, 570, https://doi.org/10.3390/rs12030570,
2020.
Prigent, C. and Jimenez, C.: An evaluation of the synergy of satellite
passive microwave observations between 1.4 and 36 GHz, for vegetation
characterization over the Tropics, Remote Sens. Environ., 257,
112346, https://doi.org/10.1016/j.rse.2021.112346, 2021.
Rao, K., Anderegg, W. R., Sala, A., Martínez-Vilalta, J., and Konings,
A. G.: Satellite-based vegetation optical depth as an indicator of
drought-driven tree mortality, Remote Sensing of Environment, 227, 125-136,
2019.
Rascio, A., Platani, C., Scalfati, G., Tonti, A., and Di Fonzo, N.: The
accumulation of solutes and water binding strength in durum wheat,
Physiol. Plantarum, 90, 715–721, 1994.
Reichardt, K. and Timm, L. C.: Soil, plant and atmosphere, Springer Nature
Switzerland, Cham, Switzerland, Springer Cham, ISBN 978-3-030-19322-5, 2014.
Ritchie, J. T.: Water dynamics in the soil-plant-atmosphere system, Plant
Soil, 58, 81–96, 1981.
Ruggiero, C., Angelino, G., and Maggio, A.: Developmental regulation of water
uptake in wheat, J. Plant Physiol., 164, 1170–1178, 2007.
Sadeghi, M., Gao, L., Ebtehaj, A., Wigneron, J. P., Crow, W. T., Reager, J.
T., and Warrick, A. W.: Retrieving global surface soil moisture from GRACE
satellite gravity data, J. Hydrol., 584, 124717, https://doi.org/10.1016/j.jhydrol.2020.124717, 2020a.
Sadeghi, M., Gao, L., Ebtehaj, A., Wigneron, J.-P., Crow, W. T., Reager, J. T., and Warrick, A. W.: Global estimates of land surface water fluxes from SMOS
and SMAP satellite soil moisture data, J. Hydrometeorol., 21,
241–253, 2020b.
Sarto, M. V., M., Sarto, J. R. W., Rampim, L., Rosset, J. S., Bassegio, D.,
da Costa, P. F., and Inagaki, A. M.: Wheat phenology and yield under
drought: a review, Austr. J. Crop Sci., 11, 941–946, 2017.
Schmugge, T. J. and Jackson, T. J.: A dielectric model of the vegetation
effects on the microwave emission from soils, IEEE Trans. Geosci. Remote
Sens., 30, 757–760, 1992.
Shukla, M. K.: Soil physics. An Introduction, CRC Press, Taylor and Francis
Group, Boca Raton, FL, USA, ISBN 9781439888421, 2014.
Siddique, M. R. B., Hamid, A. I. M. S., and Islam, M. S.: Drought stress
effects on water relations of wheat, Bot. Bull. Acad. Sin., 41, 35–39,
2000.
Slatyer, R. O. and Taylor, S. A.: Terminology in plant-and soil-water
relations, Nature, 187, 922–924, 1960.
Smart, R. E. and Bingham, G. E.: Rapid estimates of relative water content,
Plant Physiol., 53, 258–260, 1974.
Steduto, P., Hsiao, T. C., Fereres, E., and Raes, D.: Crop yield response to
water, Rome: Food and Agriculture Organization of the United Nations,
Report, 1028, ISBN 978-92-5-107274-5, 2012.
Steenpass, C., Vanderborght, J., Herbst, M., Šimůnek, J., and
Vereecken, H.: Estimating soil hydraulic properties from infrared
measurements of soil surface temperatures and TDR data, Vadose Zone J.,
9, 910–924, 2010.
Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic determination of
soil water content: measurements in coaxial transmission lines, in Water
Resour. Res., 1, 574–582, https://doi.org/10.1029/WR016i003p00574, 1980.
Turner, N. C.: Measurement of plant water status by the pressure chamber
technique, Irrigation Sci., 9, 289–308, 1988.
Turner, N. C. and Long, M. J.: Errors arising from rapid water loss in the
measurement of leaf water potential by the pressure chamber technique,
Funct. Plant Biol., 7, 527–537, 1980.
Tyree, M. T. and Zimmermann, M. H.: Xylem structure and the ascent of sap,
Springer Science and Business Media, ISBN 9783662226292, 2013.
Ulaby, F. T. and El-Rayes, M.: Microwave dielectric spectrum of
vegetation – Part II: Dual-dispersion model, IEEE Trans. Geosci. Remote
Sens., 5, 550–557, 1987.
Ulaby, F. T. and Long, D. G.: Microwave radar and radiometric remote sensing,
The University of Michigan Press, ISBN 9780472119356, 2013.
Van den Honert, T. H.: Water transport in plants as a catenary process,
Discuss. Faraday Soc., 3, 146–153, 1948.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am.
J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Wallace, J. S.: Water transport and leaf water relations in winter wheat
crops, Doctoral dissertation, University of Nottingham, 1978.
Wallace, J. S. and Biscoe, P. V.: Water relations of winter wheat: 4.
Hydraulic resistance and capacitance in the soil-plant system, J. Agr. Sci., 100, 591–600, 1983.
Wang, E. and Engel, T.: Simulation of growth, water and nitrogen uptake of
a wheat crop using the SPASS model, Environ. Modell. Softw.,
17, 387–402, 2002.
Ward, R. C. and Robinson, M. Principles of hydrology, 3rd Edn.,
McGraw-Hill Publishing Company,
London, https://doi.org/10.1002/esp.3290160308, 2014.
White, C. A., Sylvester-Bradley, R., and Berry, P. M.: Root length densities
of UK wheat and oilseed rape crops with implications for water capture and
yield, J. Exp. Bot., 66, 2293–2303, 2015.
Wigneron, J.-P., Jackson, T.J., O'Neill, P., De Lannoy, G., de Rosnay, P. Walker, J.P., Ferrazzoli, P.,Mironov, V., Bircher, S., Grant J.P., Kurum, M., Schwank, M., Munoz-Sabater, J., Das, N., Royer, A., Al-Yaari, A., Al Bitar, A., Fernandez-Moran, R., Lawrence, H., Mialon, A., Parrens, M., Richaume, P., Delwart, S., and Kerr, Y.: Modelling the passive microwave signature from land
surfaces: A review of recent results and application to the L-band SMOS and
SMAP soil moisture retrieval algorithms, Remote Sens. Environ., 192,
238–262, 2017.
Xu, Xiangtao, Konings, A. G., Longo, M., Feldman, A., Xu, L., Saatchi, S.,
Wu, D., Wu, J., and Moorcroft, P.: Leaf surface water, not plant water
stress, drives diurnal variation in tropical forest canopy water content,
New Phytol., 231, 122–136, 2021.
Yang, S. J. and Jong, E. D.: Effect of soil water potential and bulk
density on water uptake patterns and resistance to flow of water in wheat
plants, Can. J. Soil Sci., 51, 211–220, 1971.
Zhang, T., Hou, M., Liu, L., and Tian, F.: Estimation of transpiration and
canopy cover of winter wheat under different fertilization levels using
thermal infrared and visible imagery. Comput. Electr.
Agr., 165, 104936, https://doi.org/10.1016/j.compag.2019.104936, 2019.
Zhao, T., Shi, J., Entekhabi, D., Jackson, T. J., Hu, L., Peng, Z., Yao, P., Li, S., and Kang, C. S.:
Retrievals of soil moisture and vegetation optical depth using a
multi-channel collaborative algorithm, Remote Sens. Environ., 257,
112321, https://doi.org/10.1016/j.rse.2021.112321, 2021.
Zweifel, R. and Häsler, R.: Stem radius changes and their relation to
stored water in stems of young Norway spruce trees, Trees, 15, 50–57,
2000.
Zweifel, R., Item, H., and Häsler, R.: Link between diurnal stem radius
changes and tree water relations, Tree Physiol., 21, 869–877, 2001.
Short summary
This is a concept study of water dynamics across winter wheat starting from ground-based L-band radiometry in combination with on-site measurements of soil and atmosphere. We research the feasibility of estimating water potentials and seasonal flux rates of water (water uptake from soil and transpiration rates into the atmosphere) within the soil-plant-atmosphere system (SPAS) of a winter wheat field. The main finding is that L-band radiometry can be integrated into field-based SPAS assessment.
This is a concept study of water dynamics across winter wheat starting from ground-based L-band...
Altmetrics
Final-revised paper
Preprint