Articles | Volume 19, issue 9
https://doi.org/10.5194/bg-19-2523-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2523-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drought recorded by Ba∕Ca in coastal benthic foraminifera
Department of Geology, Lund University, Sölvegatan 12, 223 62
Lund, Sweden
Christine Barras
LPG UMR 6112, University of Angers, Nantes Université, Le Mans Université, CNRS, 2 bd Lavoisier 49045, Angers CEDEX 01, France
Tom Jilbert
Department of Geosciences and Geography, Faculty of Science,
University of Helsinki, Gustaf Hällström katu 2, 00560 Helsinki,
Finland
Tomas Næraa
Department of Geology, Lund University, Sölvegatan 12, 223 62
Lund, Sweden
K. Mareike Paul
Department of Geosciences and Geography, Faculty of Science,
University of Helsinki, Gustaf Hällström katu 2, 00560 Helsinki,
Finland
Magali Schweizer
LPG UMR 6112, University of Angers, Nantes Université, Le Mans Université, CNRS, 2 bd Lavoisier 49045, Angers CEDEX 01, France
Helena L. Filipsson
Department of Geology, Lund University, Sölvegatan 12, 223 62
Lund, Sweden
Related authors
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Marie Korppoo, Inese Huttunen, Markus Huttunen, Maiju Narikka, Jari Silander, Tom Jilbert, Martin Forsius, Pirkko Kortelainen, Niina Kotamäki, Cintia Uvo, and Anna-Kaisa Ronkanen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3255, https://doi.org/10.5194/egusphere-2025-3255, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The development of carbon processes in the water quality model WSFS-Vemala presents a significant advancement in simulating both total organic and inorganic carbon dynamics, burial and emissions through a river/lake network. The addition of organic acids to the total alkalinity definition improved pH simulations and thus the simulation of CO2 emissions in the acidic and organic rich waters of Finland. The new Vemala model provides a robust foundation to support water management in the future.
Margaret F. Williamson, Tom Jilbert, Alf Norkko, and Camilla Gustafsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2368, https://doi.org/10.5194/egusphere-2025-2368, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Reed bed carbon (C) storage is a topic of interest due to increased global distribution of reeds. C budgets to combat climate change often catalog reed beds as saltmarshes. Our findings show that reed beds are unique from saltmarshes, C storage is highest in reed bed sediments, and that reed bed zones may impact C storage. Further research into reed bed C is needed to better combat climate change and to ensure reeds are managed in a way that does not release excess C.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Irina Polovodova Asteman, Emilie Jaffré, Agata Olejnik, Maria Holzmann, Mary McGann, Kjell Nordberg, Jean-Charles Pavard, Delia Rösel, and Magali Schweizer
J. Micropalaeontol., 44, 119–143, https://doi.org/10.5194/jm-44-119-2025, https://doi.org/10.5194/jm-44-119-2025, 2025
Short summary
Short summary
Small boat harbours are suggested to cause pollution and alien species introductions. Here we analysed surface sediments in Hinsholmskilen harbour (Sweden) for benthic foraminifera and potentially toxic elements. Molecular and morphological analyses of foraminifera show the presence of two alien species, Trochammina hadai and Ammonia confertitesta, whilst pollution is mostly low for Cd, Co, Ni, and Pb. In contrast, As, Zn, Cu, Hg, and Cr have high levels due to the use of these elements in boat paints.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022, https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Cited articles
Alve, E. and Bernhard, J. M.: Vertical migratory response of benthic
foraminifera to controlled oxygen concentrations in an experimental
mesocosm, Mar. Ecol. Prog. Ser., 116, 137–151, 1995.
Arneborg, L.: Turnover times for the water above sill level in Gullmar
Fjord, Cont. Shelf Res., 24, 443–460, https://doi.org/10.1016/j.csr.2003.12.005, 2004.
Bahr, A., Schönfeld, J., Hoffmann, J., Voigt, S., Aurahs, R., Kucera,
M., Flögel, S., Jentzen, A., and Gerdes, A.: Comparison of and
δ18O as freshwater proxies: A multi-species core-top study on
planktonic foraminifera from the vicinity of the Orinoco River mouth, Earth
Planet Sc. Lett., 383, 45–57, https://doi.org/10.1016/j.epsl.2013.09.036, 2013.
Balistrieri, L. S. and Murray, J. W.: The surface chemistry of sediments
from the Panama Basin: The influence of Mn oxides on metal adsorption,
Geochim. Cosmochim. Ac., 50, 2235–2243, https://doi.org/10.1016/0016-7037(86)90078-5,
1986.
Barras, C., Aurélia, M., Pia, N. M., Edouard, M., Jassin, P., Carole,
L., Filipsson, H. L., and Frans, J.: Experimental calibration of manganese
incorporation in foraminiferal calcite, Geochim. Cosmochim. Ac., 237, 49–64,
https://doi.org/10.1016/j.gca.2018.06.009, 2018.
Bastos, A., Fu, Z., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J.,
Weber, U., Reichstein, M., Anthoni, P., Arneth, A., Haverd, V., Jain, A.,
Joetzjer, E., Knauer, J., Lienert, S., Loughran, T., McGuire, P. C.,
Obermeier, W., Padrón, R. S., Shi, H., Tian, H., Viovy, N., and Zaehle,
S.: Impacts of extreme summers on European ecosystems: a comparative
analysis of 2003, 2010 and 2018, Philos. T. Roy. Soc. B, 375,
20190507, https://doi.org/10.1098/rstb.2019.0507, 2020a.
Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L.,
Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A.,
Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran,
T., McGuire, P. C., Tian, H., Viovy, N., and Zaehle, S.: Direct and seasonal
legacy effects of the 2018 heat wave and drought on European ecosystem
productivity, Sci. Adv., 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724, 2020b.
Bernhard, J. M., Ostermann, D. R., Williams, D. S., and Blanks, J. K.:
Comparison of two methods to identify live benthic foraminifera: A test
between Rose Bengal and CellTracker Green with implications for stable
isotope paleoreconstructions, Paleoceanography, 21, PA4210, https://doi.org/10.1029/2006PA001290, 2006.
Burdige, D. J.: Geochemistry of marine sediments, Princeton University
Press, Princeton, NJ, USA, https://doi.org/10.2307/j.ctv131bw7s, 2006.
Brinkmann, I.: Trace-elemental data ( ) of benthic foraminifers from core-top sediments of Gullmar Fjord, Swedish West coast, Swedish National Data Service [data set], 1, https://doi.org/10.5878/eb67-9v72, 2022.
Coffey, M., Dehairs, F., Collette, O., Luther, G., Church, T., and Jickells,
T.: The behaviour of dissolved Barium in estuaries, Estuar. Coast Shelf Sci.,
45, 113–121, https://doi.org/10.1006/ecss.1996.0157, 1997
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., and
Anchukaitis, K. J.: Twenty-first century drought projections in the CMIP6
forcing scenarios, Earth's Future, 8, e2019EF001461, https://doi.org/10.1029/2019ef001461, 2020.
de Nooijer, L. J., Toyofuku, T., and Kitazato, H.: Foraminifera promote
calcification by elevating their intracellular pH, P. Natl. Acad. Sci. USA, 106,
15374–15378, https://doi.org/10.1073/pnas.0904306106, 2009.
de Nooijer, L. J., Brombacher, A., Mewes, A., Langer, G., Nehrke, G., Bijma, J., and Reichart, G.-J.: Ba incorporation in benthic foraminifera, Biogeosciences, 14, 3387–3400, https://doi.org/10.5194/bg-14-3387-2017, 2017.
Dehairs, F., Chesselet, R., and Jedwab, J.: Discrete suspended particles of
barite and the barium cycle in the open ocean, Earth Planet. Sc. Lett., 49,
528–550, https://doi.org/10.1016/0012-821X(80)90094-1, 1980.
Dunn, R. J. H., Stanitski, D. M., Gobron, N., and Willett, K. M.: Global Climate, in: State of the Climate in 2019, edited by: Blunden, J. and Arndt, D. S., B. Am. Meteorol. Soc., 101, 9–128, https://doi.org/10.1175/BAMS-D-20-0104.1, 2020.
Eggins, S. M., Rudnick, R. L., and McDonough, W. F.: The composition of
peridotites and their minerals: a laser-ablation ICP–MS study, Earth Planet. Sc. Lett., 154, 53–71, https://doi.org/10.1016/S0012-821X(97)00195-7, 1998.
Erez, J.: The source of ions for biomineralization in foraminifera and their
implications for paleoceanographic proxies, Rev. Mineral. Geochem., 54,
115–149, https://doi.org/10.2113/0540115, 2003.
Filipsson, H. L. and Nordberg, K.: Climate variations, an overlooked factor
influencing the recent marine environment, An example from Gullmar Fjord,
Sweden, illustrated by benthic foraminifera and hydrographic data,
Estuaries, 27, 867–881, https://doi.org/10.1007/BF02912048, 2004.
Froelich, P. N., Klinkhammer, G., Bender, M. L., Luedtke, N., Heath, G. R.,
Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early
oxidation of organic matter in pelagic sediments of the eastern equatorial
Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
GeoReM: Geological and Environmental Reference Material: http://georem.mpch-mainz.gwdg.de, last access: 30 April 2021.
Glockzin, M., Pollehne, F., and Dellwig, O.: Stationary sinking velocity of
authigenic manganese oxides at pelagic redoxclines, Mar. Chem., 160, 67–74,
https://doi.org/10.1016/j.marchem.2014.01.008, 2014.
Groeneveld, J., Filipsson, H. L., Austin, W. E., Darling, K., McCarthy, D.,
Krupinski, N. B. Q., Bird, C., and Schweizer, M.: Assessing proxy signatures
of temperature, salinity, and hypoxia in the Baltic Sea through
foraminifera-based geochemistry and faunal assemblages, J. Micropalaentol.,
37, 403–429, https://doi.org/10.5194/jm-37-403-2018, 2018.
Gustafsson, M. and Nordberg, K.: Living (stained) benthic foraminiferal
response to primary production and hydrography in the deepest part of the
Gullmar Fjord, Swedish West Coast, with comparisons to Höglund's 1927
material, J. Foraminiferal. Res., 31, 2–11, https://doi.org/10.2113/0310002, 2001.
Hall, J. M. and Chan, L. H.: in benthic foraminifera: Thermocline and
middepth circulation in the North Atlantic during the last glaciation,
Paleoceanography, 19, PA4018, https://doi.org/10.1029/2004PA001028, 2004.
Hammer, O., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
statistics software package for education and data analysis, Palaeontol.
Electron., 4, 9 pp., http://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 30 April 2021), 2001.
Hanor, J. S. and Chan, L. H.: Non-conservative behavior of barium during
mixing of Mississippi River and Gulf of Mexico waters, Earth Planet. Sc. Lett.,
37, 242–250, https://doi.org/10.1016/0012-821X(77)90169-8, 1977.
Hönisch, B., Allen, K. A., Russell, A. D., Eggins, S. M., Bijma, J.,
Spero, H. J., Lea, D. W., and Yu, J.: Planktic foraminifers as recorders of
seawater , Mar. Micropaleontol., 79, 52–57, https://doi.org/10.1016/j.marmicro.2011.01.003, 2011.
Howe, J. A., Austin, W. E., Forwick, M., Paetzel, M., Harland, R., and Cage,
A. G.: Fjord systems and archives: a review, Geol. Soc. Spec. Publ., 344, 5–15,
https://doi.org/10.1144/SP344.2, 2010.
Hsieh, Y.-T. and Henderson, G. M.: Barium stable isotopes in the global
ocean: Tracer of Ba inputs and utilization, Earth Planet. Sc. Lett., 473,
269–278, https://doi.org/10.1016/j.epsl.2017.06.024, 2017.
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A.
W.: GeoReM: A new geochemical database for reference materials and isotopic
standards, Geostand. Geoanal. Res., 29, 333–338, https://doi.org/10.1111/j.1751-908X.2005.tb00904.x, 2005.
Jochum, K. P., Scholz, D., Stoll, B., Weis, U., Wilson, S. A., Yang, Q.,
Schwalb, A., Börner, N., Jacob, D. E., and Andreae, M. O.: Accurate trace
element analysis of speleothems and biogenic calcium carbonates by
LA-ICP-MS, Chem. Geol., 318, 31–44, https://doi.org/10.1016/j.chemgeo.2012.05.009,
2012.
Jokinen, S. A., Koho, K., Virtasalo, J. J., and Jilbert, T.: Depth and
intensity of the sulfate-methane transition zone control sedimentary
molybdenum and uranium sequestration in a eutrophic low-salinity setting,
Appl. Geochem., 122, 104767, https://doi.org/10.1016/j.apgeochem.2020.104767, 2020.
Koho, K. A., de Nooijer, L. J., Fontanier, C., Toyofuku, T., Oguri, K., Kitazato, H., and Reichart, G.-J.: Benthic foraminiferal ratios reflect microhabitat preferences, Biogeosciences, 14, 3067–3082, https://doi.org/10.5194/bg-14-3067-2017, 2017.
Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf,
S., and Gray, L.: Extreme weather events in early summer 2018 connected by a
recurrent hemispheric wave-7 pattern, Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf, 2019.
Lepland, A., Sæther, O., and Thorsnes, T.: Accumulation of barium in
recent Skagerrak sediments: sources and distribution controls, Mar. Geol.,
163, 13–26, https://doi.org/10.1016/S0025-3227(99)00104-8, 2000.
Martinez-Ruiz, F., Paytan, A., Gonzalez-Muñoz, M. T., Jroundi, F., Abad,
M. M., Lam, P. J., Bishop, J. K. B., Horner, T. J., Morton, P. L., and
Kastner, M.: Barite formation in the ocean: Origin of amorphous and
crystalline precipitates, Chem. Geol., 511, 441–451, https://doi.org/10.1016/j.chemgeo.2018.09.011, 2019.
Mashiotta, T. A., Lea, D. W., and Spero, H. J.: Glacial–interglacial changes
in subantarctic sea surface temperature and δ18O-water using
foraminiferal Mg, Earth Planet. Sc. Lett., 170, 417–432, https://doi.org/10.1016/S0012-821X(99)00116-8, 1999.
McManus, J., Berelson, W. M., Klinkhammer, G. P., Johnson, K. S., Coale, K.
H., Anderson, R. F., Kumar, N., Burdige, D. J., Hammond, D. E., Brumsack, H.
J., McCorkle, D. C., and Rushdi, A.: Geochemistry of barium in marine
sediments: implications for its use as a paleoproxy, Geochim. Cosmochim. Ac.,
62, 3453–3473, https://doi.org/10.1016/S0016-7037(98)00248-8, 1998.
Mojtahid, M., Hennekam, R., De Nooijer, L., Reichart, G.-J., Jorissen, F.,
Boer, W., Le Houedec, S., and De Lange, G. J.: Evaluation and application of
foraminiferal element/calcium ratios: Assessing riverine fluxes and
environmental conditions during sapropel S1 in the Southeastern
Mediterranean, Mar. Micropaleontol., 153, 101783, https://doi.org/10.1016/j.marmicro.2019.101783, 2019.
Murray, J.: Ecology and Applications of Benthic Foraminifera, Cambridge
University Press, Cambridge, UK, ISBN 9780521828390, 2006.
Ní Fhlaithearta, S., Reichart, G.-J., Jorissen, F. J., Fontanier, C.,
Rohling, E. J., Thomson, J., and De Lange, G. J.: Reconstructing the seafloor
environment during sapropel formation using benthic foraminiferal trace
metals, stable isotopes, and sediment composition, Paleoceanography, 25,
PA4225, https://doi.org/10.1029/2009pa001869, 2010.
Ni, S., Krupinski, N. B. Q., Groeneveld, J., Fanget, A. S., Böttcher, M.
E., Liu, B., Lipka, M., Knudsen, K. L., Naeraa, T., Seidenkrantz, M. S., and
Filipsson, H. L.: Holocene hydrographic variations from the Baltic-North Sea
transitional area (IODP site M0059), Paleoceanogr. Paleoclimatol., 35,
e2019PA003722, https://doi.org/10.1029/2019pa003722, 2020.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite:
Freeware for the visualisation and processing of mass spectrometric data, J.
Anal. At. Spectrom., 26, 2508–2518, https://doi.org/10.1039/C1JA10172B, 2011.
Paytan, A. and Griffith, E. M.: Marine barite: Recorder of variations in
ocean export productivity, Deep-Sea Res. Pt. II, 54,
687–705, https://doi.org/10.1016/j.dsr2.2007.01.007, 2007.
Peters, W., Bastos, A., Ciais, P., and Vermeulen, A.: A historical,
geographical and ecological perspective on the 2018 European summer drought,
Philos. T. Roy. Soc. B, 375, 20190505, https://doi.org/10.1098/rstb.2019.0505, 2020.
Saha, N., Rodriguez-Ramirez, A., Nguyen, A. D., Clark, T. R., Zhao, J.-X.,
and Webb, G. E.: Seasonal to decadal scale influence of environmental
drivers on and in coral aragonite from the southern Great Barrier
Reef, Sci. Total Environ., 639, 1099–1109, https://doi.org/10.1016/j.scitotenv.2018.05.156, 2018.
Stecher, H. A. and Kogut, M. B.: Rapid barium removal in the Delaware
estuary, Geochim. Cosmochim. Ac., 63, 1003–1012, https://doi.org/10.1016/S0016-7037(98)00310-X, 1999.
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.: A
reconstruction of global hydroclimate and dynamical variables over the
Common Era, Sci. Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86, 2018.
Sternberg, T.: Regional drought has a global impact, Nature, 472, 169–169,
https://doi.org/10.1038/472169d, 2011.
SHARK: Svenskt HavsARKivs hydrographic database: https://sharkweb.smhi.se/hamta-data/, last access: 10 February 2021.
SMHI: Swedish Meteorological and Hydrological Institute's database [data set], https://www.smhi.se/, last access: 10 February.
Tallaksen, L. M. and Van Lanen, H. A. (Eds.): Hydrological drought:
processes and estimation methods for streamflow and groundwater, Dev. Water
Sci., Elsevier, Amsterdam, Netherlands, 48 pp., 2004.
Vandieken, V., Pester, M., Finke, N., Hyun, J.-H., Friedrich, M. W., Loy, A.,
and Thamdrup, B.: Three manganese oxide-rich marine sediments harbor similar
communities of acetate-oxidizing manganese-reducing bacteria, ISME J., 6,
2078–2090, https://doi.org/10.1038/ismej.2012.41, 2012.
Vattenweb hydrological database: https://www.smhi.se/data/hydrologi/vattenwebb, last access: 10
February 2021.
Von Breymann, M. T., Emeis, K.-C., and Suess, E.: Water depth and diagenetic
constraints on the use of barium as a palaeoproductivity indicator, Geol. Soc.
Spec. Publ., 64, 273–284, https://doi.org/10.1144/gsl.Sp.1992.064.01.18, 1992.
Wit, J., Reichart, G.-J., Jung, S., and Kroon, D.: Approaches to unravel
seasonality in sea surface temperatures using paired single-specimen
foraminiferal δ18O and analyses, Paleoceanography, 25,
PA4220, https://doi.org/10.1029/2009PA001857, 2010.
Wolgemuth, K. and Broecker, W. S.: Barium in sea water, Earth Planet. Sc. Lett.,
8, 372–378, https://doi.org/10.1016/0012-821X(70)90110-X, 1970.
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
The concentration of the trace metal barium (Ba) in coastal seawater is a function of...
Altmetrics
Final-revised paper
Preprint