Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4227-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4227-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Iris Johanna Aalto
CORRESPONDING AUTHOR
Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
Eduardo Eiji Maeda
Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
Area of Ecology and Biodiversity, School of Biological Sciences,
Faculty of Science, University of Hong Kong, Hong Kong SAR, China
Janne Heiskanen
Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
Institute for Atmospheric and Earth System Research, Faculty of
Science, University of Helsinki, Helsinki, Finland
Eljas Kullervo Aalto
Department of Economics, Turku School of Economics, University
of Turku, 20014, Turku, Finland
Petri Kauko Emil Pellikka
Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
Related authors
Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Lee Stevenson, Alessandro Gimona, Scot Ramsay, Alison Hester, Iris Aalto, and Josie Geris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2258, https://doi.org/10.5194/egusphere-2024-2258, 2024
Preprint archived
Short summary
Short summary
Planting trees on farmlands is now considered as one of the potential solutions to climate change. Trees can suck CO2 out of our atmosphere and store it in their trunks and in the soil beneath them. They can promote biodiversity, protect against soil erosion and drought. They can even help reduce flood risk for downstream communities. But we need models that can tell us the likely impact of trees at different locations and scales. Our study provides such a model.
Martin Rückamp, Gong Cheng, Karlheinz Gutjahr, Marco Möller, Petri K. E. Pellikka, and Christoph Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3150, https://doi.org/10.5194/egusphere-2025-3150, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The study simulates the 21st-century evolution of Great Aletsch Glacier and Hintereisferner using full-Stokes ice dynamics and surface mass balance under different emission scenarios. Results show significant ice loss, with Hintereisferner expected to disappear by mid-century. Great Aletsch Glacier vanish by the end of the century under high-emission scenarios, but persist under lower-emission scenarios. These trends agree with large-scale models except some variability.
Janne Heiskanen, Hanna Haurinen, Chemuku Wekesa, and Petri Pellikka
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 179–185, https://doi.org/10.5194/isprs-annals-X-3-2024-179-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-179-2024, 2024
Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Lee Stevenson, Alessandro Gimona, Scot Ramsay, Alison Hester, Iris Aalto, and Josie Geris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2258, https://doi.org/10.5194/egusphere-2024-2258, 2024
Preprint archived
Short summary
Short summary
Planting trees on farmlands is now considered as one of the potential solutions to climate change. Trees can suck CO2 out of our atmosphere and store it in their trunks and in the soil beneath them. They can promote biodiversity, protect against soil erosion and drought. They can even help reduce flood risk for downstream communities. But we need models that can tell us the likely impact of trees at different locations and scales. Our study provides such a model.
Matti Räsänen, Risto Vesala, Petri Rönnholm, Laura Arppe, Petra Manninen, Markus Jylhä, Jouko Rikkinen, Petri Pellikka, and Janne Rinne
Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, https://doi.org/10.5194/bg-20-4029-2023, 2023
Short summary
Short summary
Fungus-growing termites recycle large parts of dead plant material in African savannas and are significant sources of greenhouse gases. We measured CO2 and CH4 fluxes from their mounds and surrounding soils in open and closed habitats. The fluxes scale with mound volume. The results show that emissions from mounds of fungus-growing termites are more stable than those from other termites. The soil fluxes around the mound are affected by the termite colonies at up to 2 m distance from the mound.
Peifeng Su, Jorma Joutsensaari, Lubna Dada, Martha Arbayani Zaidan, Tuomo Nieminen, Xinyang Li, Yusheng Wu, Stefano Decesari, Sasu Tarkoma, Tuukka Petäjä, Markku Kulmala, and Petri Pellikka
Atmos. Chem. Phys., 22, 1293–1309, https://doi.org/10.5194/acp-22-1293-2022, https://doi.org/10.5194/acp-22-1293-2022, 2022
Short summary
Short summary
We regarded the banana shapes in the surface plots as a special kind of object (similar to cats) and applied an instance segmentation technique to automatically identify the new particle formation (NPF) events (especially the strongest ones), in addition to their growth rates, start times, and end times. The automatic method generalized well on datasets collected in different sites, which is useful for long-term data series analysis and obtaining statistical properties of NPF events.
Yang Liu, Simon Schallhart, Ditte Taipale, Toni Tykkä, Matti Räsänen, Lutz Merbold, Heidi Hellén, and Petri Pellikka
Atmos. Chem. Phys., 21, 14761–14787, https://doi.org/10.5194/acp-21-14761-2021, https://doi.org/10.5194/acp-21-14761-2021, 2021
Short summary
Short summary
We studied the mixing ratio of biogenic volatile organic compounds (BVOCs) in a humid highland and dry lowland African ecosystem in Kenya. The mixing ratio of monoterpenoids was similar to that measured in the relevant ecosystems in western and southern Africa, while that of isoprene was lower. Modeling the emission factors (EFs) for BVOCs from the lowlands, the EFs for isoprene and β-pinene agreed well with what is assumed in the MEGAN, while those of α-pinene and limonene were higher.
Cited articles
Abdelgalil, E. A.: Deforestation in the drylands of Africa: Quantitative
modelling approach, Environ. Dev. Sustain., 6,
415–427, https://doi.org/10.1007/s10668-005-0787-1, 2004.
Abera, T. A., Heiskanen, J., Pellikka, P. K., Adhikari, H., and Maeda, E.
E.: Climatic impacts of bushland to cropland conversion in Eastern Africa,
Sci. Total. Environ., 717, 137255, https://doi.org/10.1016/j.scitotenv.2020.137255,
2020.
Adhikari, H., Heiskanen, J., Siljander, M., Maeda, E., Heikinheimo, V., and
Pellikka, P. K.: Determinants of Aboveground Biomass across an Afromontane
Landscape Mosaic in Kenya, Remote Sens., 9, 827,
https://doi.org/10.3390/rs9080827, 2017.
Adhikari, U., Nejadhashemi, A. P., and Woznicki, S. A.: Climate change and
eastern Africa: a review of impact on major crops, Food Energ.
Secur., 4, 110–132, https://doi.org/10.1002/fes3.61, 2015.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56, United Nations Food and Agriculture Organization, Rome, ISBN 92-5-104219-5 1998.
Amara, E., Adhikari, H., Heiskanen, J., Siljander, M., Munyao, M., Omondi,
P., and Pellikka, P.: Aboveground Biomass Distribution in a Multi-Use
Savannah Landscape in Southeastern Kenya: Impact of Land Use and Fences,
Land, 9, 381, https://doi.org/10.3390/land9100381, 2020.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, P., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake Distribution
and Covariation with Climate, Science, 329, 834–838,
https://doi.org/10.1126/science.1184984, 2010.
Belsky, A. J., Amundson, R. G., Duxbury, J. M., Riha, S. J., Ali, A. R., and
Mwonga, S. M.: The Effects of Trees on Their Physical, Chemical and
Biological Environments in a Semi-Arid Savanna in Kenya, J. Appl. Ecol., 26,
1005–1024, https://doi.org/10.2307/2403708, 1989.
Bense, V. F., Read, T., and Verhoef, A.: Using distributed temperature
sensing to monitor field scale dynamics of ground surface temperature and
related substrate heat flux, Agr. Forest. Meteorol., 220, 207–215,
https://doi.org/10.1016/j.agrformet.2016.01.138, 2016.
Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRoberts, J. F.,
Thierfelder, C., and Prasanna, B. M.: Adapting maize production to climate
change in sub-Saharan Africa, Food Secur., 5, 345–360,
https://doi.org/10.1007/s12571-013-0256-x, 2013.
Chakravarty, S., Pala, N. A., Tamang, B., Sarkar, B. C., Abna Manohar K.,
Rai, P., Puri, A., and Shukla, G.: Ecosystem services of Trees Outside
Forest, in: Sustainable Agriculture, Forest and Environmental Management,
edited by: Jhariya, M. K., Banerjee, A., Meena, R. S., and Yadav, D. K.,
Springer, https://doi.org/10.1007/978-981-13-6830-1_10, 2019.
Chen, J., Saunders, S. C., Crow, T. R., and Naiman, R. J.: Microclimate in
forest ecosystem and landscape ecology, Bioscience, 49, 288–297,
https://doi.org/10.2307/1313612, 1999.
Das, A., Nagendra, H., Anand, M., and Bunyan, M.: Topographic and
Bioclimatic Determinants of the Occurrence of Forest and Grassland in
Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India, PLoS
One, 10, e0130566, https://doi.org/10.1371/journal.pone.0130566, 2015.
Davis, K., T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E., and
Abatzoglou, J. T.: Microclimate buffering in forests of the future: the role
of local water balance, Ecography, 42, 1–11,
https://doi.org/10.1111/ecog.03836, 2019.
De Frenne, P., Rodríguez-Sánchez, F., Coomes, D. A., Baeten, L., Verstraeten, G., Vellend, M., Bernhardt-Römermann, M.,
Brown, C. D., Brunet, J., Cornelis, J., Decocq, G. M., Dierschke, H., Eriksson, O., Gilliam, F. S., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Jenkins, M. A., Kelly, D. L., Kirby, K. J., Mitchell, F. J. G., Naaf, T., Newman, M., Peterken, G., Petrik, P., Schultz, J., Sonnier, G., Van Calster, H., Waller, D. M., Walther, G-R., White, P. S, Woods, K. D., Wulf, M., Graae, B. J., and Verheyen, K.: Microclimate moderates
plant responses to macroclimate warming, P. Natl. Acad. Sci. USA, 110,
18561–18565, https://doi.org./10.1073/pnas.1311190110, 2013.
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., and Lenoir, J.: Global buffering of
temperatures under forest canopies, Nat. Ecol. Evol., 3, 744–749,
https://doi.org/10.1038/s41559-019-0842-1, 2019.
De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., Meeussen, C., Ogée, J., Tyystjärvi, V., Vangansbeke, P., and Hylander, K.: Forest microclimates and climate change:
Importance, drivers and future research agenda, Glob. Chang Biol., 27,
2279–2297, https://doi.org/10.1111/gcb.15569, 2021.
Ellison, D., Morris, C.E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., van Noordwijk, M., Creed, I. F., Pokorny, J., Gaveau, D., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and Sullivan, C. A.: Trees, forests and water: Cool insights for a hot
world, Global Environ. Chang., 43, 51–61,
https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017.
Erdogan, H. E., Pellikka, P. K., and Clark, B.: Modelling the impact of
land-cover change on potential soil loss in the Taita Hills, Kenya, between
1987 and 2003 using remote-sensing and geospatial data, Int. J. Remote
Sens., 32, 5919–5945, https://doi.org/10.1080/01431161.2010.499379, 2011.
Ewers, R. M. and Banks-Leite, C.: Fragmentation Impairs the Microclimate
Buffering Effect of Tropical Forests, PLoS One, 8, e58093,
https://doi.org/10.1371/journal.pone.0058093, 2013.
FAO: Global Forest Resources Assessment 2000 (FRA 2000), Food and Agriculture
Organization of the United Nations, Rome, Italy,
ISBN 978-9251046425, 2000.
FAO: FRA 2015 terms and definitions, Forest Resources Assessment Working Paper 180, Food and Agricultural Organization of the United Nations, Rome, Italy, 2012.
FAO: Global forest resources assessment 2015. How are the world's forests
changing?, 2nd Edn., Food and Agriculture Organization of the United Nations,
Rome, Italy, ISBN 978-92-5-109283-5, 2016.
Agriculture (Farm Forestry) Rules: Cap. 318 (KEN), https://www.fao.org/faolex/results/details/en/c/LEX-FAOC101360 (last access: 8 April 2021), 2009.
Geiger, R.: The climate near the ground, 4th Edn., Harvard
University Press, United States of America, ISBN 978-0674135000, 1980.
Goward, S. N. and Hope, A. S.: Evapotranspiration from combined reflected
solar and emitted terrestrial radiation: Preliminary FIFE results from AVHRR
data, Adv. Space Res., 9, 239–249, 1989.
Goward, S. N., Cruickshanks, G. D., and Hope, A. S.: Observed relation
between thermal emission and reflected spectral radiance of a complex
vegetated landscape, Remote Sens. Environ., 18, 137–146, 1985.
Griffin, A. M., Popescu, S. C., and Zhao, K.: Using LIDAR and Normalized
Difference Vegetation Index to remotely determine LAI and percent canopy
cover, in: SilviLaser, Edinburgh, United Kingdom, 17–19 September,
446–455, 2008.
He, J., Zhao, W., Li, A., Wen, F., and Yu, D.: The impact of the terrain
effect on land surface temperature variation based on Landsat-8 observations
in mountainous areas, Int. J. Remote Sens., 40, 1808–1827,
https://doi.org/10.1080/01431161.2018.1466082, 2019.
Heiskanen, J., Korhonen, L., Hietanen, J., and Pellikka, P. K.: Use of
airborne lidar for estimating canopy gap fraction and leaf area index of
tropical montane forests, Int. J. Remote Sens., 36, 2569–2583,
https://doi.org/10.1080/01431161.2015.1041177, 2015a.
Heiskanen, J., Korhonen, L., Hietanen, J., Heikinheimo, V., Schäfer, E.,
and Pellikka, P. K. E.: Comparison of field and airborne laser scanning
based crown cover estimates across land cover types in Kenya, Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XL-7/W3, 409–415,
https://doi.org/10.5194/isprsarchives-XL-7-W3-409-2015, 2015b.
Helle, J.: Lentolaserkeilaus ja hemisfäärikuvaus
metsikkösadannan tutkimisessa Taitavuorilla Keniassa, B.Sc. thesis,
University of Helsinki, 2016.
Ilyama, M., Neufeldt, H., Dobie, P., Njenga, M., Ndegwa, G., and Jamnadass,
R.: The potential of agroforestry in the provision of sustainable woodfuel
in sub-Saharan Africa, Curr. Opin. Environ. Sustain., 6, 138–147,
https://doi.org/10.1016/j.cosust.2013.12.003, 2014
IPCC: Global Warming of 1.5 ∘C, An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Cambridge University Press, Cambridge, UK and New York, NY, USA, 616 pp., https://doi.org/10.1017/9781009157940, 2018.
Jiménez-Muñoz, J. C. and Sobrino, J. A.: A generalized
single-channel method for retrieving land surface temperature from remote
sensing data, J. Geophys. Res., 108, 4688,
https://doi.org/10.1029/2003JD003480, 2003.
Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattra, C.,
and Cristóbal, J.: Land Surface Temperature Retrieval Methods from
Landsat-8 Thermal Infrared Sensor Data, IEEE Geosci. Remote S., 11,
1840–1843, https://doi.org/10.1109/LGRS.2014.2312032, 2014.
Jin, M. and Dickinson, R. E.: Land surface skin temperature climatology:
benefitting from the strengths of satellite observations, Environ. Res.
Lett., 5, 044004, https://doi.org/10.1088/1748-9326/5/4/044004, 2010.
Jucker, T., Hardwick, S. R., Both, S., Elias, D. M. O., Ewers, R. M., Milodowski, D. T., Swinfield, T., and Coomes, D. A.: Canopy structure and topography
jointly constrain the microclimate of human-modified tropical landscapes,
Glob. Change Biol., 24, 5243–5258, https://doi.org/10.1111/gcb.14415,
2018.
Kim, J.-P.: Variation in the accuracy of thermal remote sensing, Int. J.
Remote Sens., 34, 729–750, https://doi.org/10.1080/01431161.2012.713143,
2013.
Korhonen, L., Korhonen, K. T., Rautiainen, M., and Stenberg, P.: Estimation
of Forest Canopy Cover: A Comparison of Field Measurement Techniques, Silva
Fenn., 40, 577–588, https://doi.org/10.14214/sf.315, 2006.
Kuyah, S., Whitney, C. W., Jonsson, M., Sileshi, G. W., Öborn, I.,
Muthuri, C. W., and Luedeling, E.: Agroforestry delivers a win-win
solution for ecosystem services in sub-Saharan Africa. A meta-analysis,
Agron Sustain Dev, 39, https://doi.org/10.1007/s13593-019-0589-8, 2019.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer, G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law, B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K. T., Richardson, A. D., Schmid, H. P., Staebler, R., Wofsy, S., and Zhao, L.: Observed increase in local cooling effect of
deforestation at higher latitudes, Nature, 479, 384–387,
https://doi.org/10.1038/nature10588, 2011.
Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., and Li, S.: Local
cooling and warming effects of forests based on satellite observations,
Nat. Commun., 6, 6603, https://doi.org/10.1038/ncomms7603, 2015.
Li, Y., De Noblet-Ducoudré, N., Davin, E. L., Motesharrei, S., Zeng, N.,
Li, S., and Kalnay, E.: The role of spatial scale and background climate in
the latitudinal temperature response to deforestation, Earth Syst. Dynam.,
7, 167–181, https://doi.org/10.5194/esd-7-167-2016, 2016.
Li, Z-L., Tang, B-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and Sobrino, J. A.: Satellite-derived land surface temperature: Current status and
perspectives, Remote Sens. Environ., 131, 14–37,
https://doi.org/10.1016/j.rse.2012.12.008, 2013.
Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., Don, A., Erb, K.-H., Ferlicoq, M., Gielen, B., Grünwald, T., Houghton, R. A., Klumpp, K., Knohl, A., Kolb, T., Kuemmerle, T., Laurila, T., Lohila, A., Loustau, D., McGrath, M. J., Meyfroidt, P., Moors, E. J., Naudts, K., Novick, K., Otto, J., Pilegaard, K., Pio, C. A., Rambal, S., Rebmann, C., Ryder, J., Suyker, A. E., Varlagin, A., Wattenbach, M., and Dolman, A. J.: Land management and land-cover change have impacts
of similar magnitude on surface temperature, Nat. Clim. Change, 4, 389–393,
https://doi.org/10.1038/nclimate2196, 2014.
Mace, G. M., Norris, K., and Fitter, A. H.: Biodiversity and ecosystem
services: a multilayered relationship, Trends Ecol. Evol., 27, 19–26,
https://doi.org/10.1016/j.tree.2011.08.006, 2012.
Maclean, Duffy, J. P., Haesen, S., Govaert, S., De Frenne, P., Vanneste, T.,
Lenoir, J., Lembrechts, J. J., Rhodes, M. W., and Van Meerbeek, K.: On the
measurement of microclimate, Methods Ecol. Evol., 12, 1397–1410,
https://doi.org/10.1111/2041-210X.13627, 2021.
Maeda, E. E. and Hurskainen, P.: Spatiotemporal characterization of land
surface temperature in Mount Kilimanjaro using satellite data, Theor. Appl.
Climatol., 118, 497–509, https://doi.org/10.1007/s00704-013-1082-y, 2014.
Maeda, E. E., Clark, B. J., Pellikka, P., and Siljander, M.: Modelling
agricultural expansion in Kenya's Eastern Arc Mountains biodiversity
hotspot, Agr. Syst., 103, 609–620,
https://doi.org/10.1007/s00704-013-1082-y, 2010.
Makumba, W., Janssen, B., Oenema, O., Akinnifesi, F. K., Mweta, D., and Kwesiga, F.: The long-term effects of a gliricidia–maize intercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties, Agric. Ecosyst. Environ., 116, 85–92, https://doi.org/10.1016/j.agee.2006.03.012, 2006.
Martínez Pastur, G., Perera, A. H., Peterson, U., and Iverson, L. R.:
Ecosystem Services from Forest Landscapes: An Overview, in: Ecosystem
Services from Forest Landscape, edited by: Perera, A., Peterson, U., Pastur,
G., and Iverson, L., Springer, https://doi.org/10.1007/978-3-319-74515-2, 2018.
Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J., and Daily, G.
C.: Quantifying and sustaining biodiversity in tropical agricultural
landscapes, P. Natl. Acad. Sci. USA, 113, 14544–14551,
https://doi-org/10.1073/pnas.1604981113, 2016.
Mildrexler, D. J., Zhao, M., and Running, S. W.: A global comparison between
station air temperatures and MODIS land surface temperatures reveals the
cooling role of forests, J. Geophys. Res., 116,
G03025,
https://doi.org/10.1029/2010JG001486, 2011.
MoALF: Climate Risk Profile for Taita Taveta, Kenya County Climate Risk
Profile Series, The Kenya Ministry of Agriculture, Livestock and Fisheries
(MoALF), Nairobi, 2016.
Muimba-Kankolongo, A.: Food Crop Production by Smallholder Farmers in
Southern Africa, Academic Press, 382 pp., ISBN 978-0-12-814383-4, 2018.
Mwalusepo, S., Massawe, E. S., Affognon, H., Okuku, G. O., Kingori, S., Mburu, P. D. M., Ong'amo, G. O., Muchugu, E., Calatayud, P-A., Landmann, T., Muli, E., Raina, S. K., Johansson, T., and Le Ru, B. P.: Smallholder Farmers' Perspectives on
Climatic Variability and Adaptation Strategies in East Africa: The Case of
Mount Kilimanjaro in Tanzania, Taita and Machakos Hills in Kenya, J. Earth
Sci. Clim. Change, 6, 313, https://doi.org/10.4172/2157-7617.1000313, 2015.
Ndossi, M. I. and Avdan, U.: Application of Open Source Coding Technologies
in the Production of Land Surface Temperature (LST) Maps from Landsat: A
PyQGIS Plugin, Remote Sens., 8, 413, https://doi.org/10.3390/rs8050413,
2016.
Nemani, R., Pierce, L., and Running, S.: Developing Satellite-derived
Estimates of Surface Moisture Status, J. Appl. Meteorol., 32, 548–557,
1993.
Nemani, R. R. and Running, S. W.: Land cover characterization using
multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR, Ecol.
Appl., 7, 79–90, 1997.
Nobis, M. and Hunziker, U.: Automatic thresholding for hemispherical
canopy-photographs based on edge detection, Agr. Forest Meteorol., 128,
243–250, https://doi.org/10.1016/j.agrformet.2004.10.002, 2005.
Nyamadzawo, G., Nyamugafata, P., Chikowo, R., and Giller, K. E.: Partitioning of
simulated rainfall in a kaolinitic soil under improved fallow-maize rotation
in Zimbabwe, Agrofor. Syst., 59, 207–214,
https://doi.org/10.1023/B:AGFO.0000005221.67367.fd, 2003.
Nyamadzawo, G., Chikowo, R., Nyamugafata, P., and Giller, K. E.: Improved legume
tree fallows and tillage effects on structural stability and infiltration
rates of a kaolinitic sandy soil from central Zimbabwe, Soil Till. Res.,
96, 182–194, https://doi.org/10.1016/j.still.2007.06.008, 2007.
Nyamadzawo, G., Nyamugafata, P., Wuta, M., and Nyamangara, J.: Maize yields under
coppicing and non coppicing fallows in a fallow-maize rotation system in
central Zimbabwe, Agrofor. Syst., 84, 273–286,
https://doi.org/10.1007/s10457-011-9453-9, 2012.
Ong, C. K., Black, C. R., and Muthuri, C. W.: Modifying forestry and
agroforestry to increase water productivity, CAB Reviews: Perspectives in
Agriculture, Veterinary Science, Nutr. Nat. Resour., 1, 65,
https://doi.org/10.1079/PAVSNNR20061065, 2006.
Paletto, A. and Tosi, V.: Forest canopy cover and canopy closure:
comparison of assessment techniques, Eur. J. Forest Res., 128, 265–272,
https://doi.org/10.1007/s10342-009-0262-x, 2009.
Pellikka, P. and Hakala, E.: Climate change, in: Megatrends in Africa,
edited by: Vastapuu, I., Mattlin, M., Hakala, E., and Pellikka, P., 7–14,
Ministry of Foreign Affairs of Finland, ISBN 978-952-281-641-2, 2019.
Pellikka, P., Seed, E. D., and King, D. J.: Modelling Deciduous Forest Ice
Storm Damage Using Aerial CIR Imagery and Hemispheric Photography, Can. J.
Remote Sens., 26, 394–405, https://doi.org/10.1080/07038992.2000.10855271,
2000.
Pellikka, P. K., Lötjönen, M., Siljander, M., and Lens, L.: Airborne
remote sensing of spatiotemporal change (1955–2004) in indigenous and
exotic forest cover in the Taita Hills, Kenya, Int. J. Appl. Earth Obs., 11,
221–232, https://doi.org/10.1016/j.jag.2009.02.002, 2009.
Pellikka, P. K. E., Clark, B. J. F., Gosa, A. G., Himberg, N., Hurskainen, P., Maeda, E., Mwang'ombe, J., Omoro, L. M. A., and Siljander, M.: Agricultural Expansion and Its Consequences
in the Taita Hills, Kenya, in: Developments in Earth Surface Processes, Vol.
16, edited by: Paron, P., Olago, D., and Omuto, C. T., Elsevier, Amsterdam,
165–179, ISBN 978-0-444-59559-1, 2013.
Pellikka, P. K., Heikinheimo, V., Hietanen, J., Schäfer, E., Siljander,
M., and Heiskanen, J.: Impact of land cover change on aboveground carbon
stocks in Afromontane landscape in Kenya, Appl. Geogr., 94, 178–189,
https://doi.org/10.1016/j.apgeog.2018.03.017, 2018.
Potter, K. A., Woods, H. A., and Pincebourde, S.: Microclimatic challenges
in global change biology, Glob. Change Biol., 19,
2932–2939, https://doi.org/10.1111/gcb.12257, 2013.
Prata, A. J., Caselles, V., Coll, C., Sobrino, A., and Ottlé, C.:
Thermal Remote Sensing of Land Surface Temperature from Satellites: Current
Status and Future Prospects, Remote Sens. Rev., 12, 175–224,
https://doi.org/10.1080/02757259509532285, 1995.
R Core Team: RStudio: Integrated Development for R, RStudio, PBC, Boston,
United States, http://www.rstudio.com/, last access: 30 November 2019.
Räsänen, M., Chung, M., Katurji, M., Pellikka, P., Rinne, J., and
Katul, G. G.: Similarity in Fog and Rainfall Intermittency, Geophys. Res.
Lett., 45, 10691–10699, 2018.
Rhoades, C.: Seasonal pattern of nitrogen mineralization and soil moisture
beneath Faidherbia albida (syn Acacia albida) in central Malawi, Agrofor.
Syst., 29, 133–145, 1995.
Ridler, T. W. and Calvard, S.: Picture Thresholding Using an Iterative
Selection Method, IEEE T. Syst. Man Cyb., 8, 630–632, 1978.
Schleppi, P., Conedera, M., Sedivy, I., and Thimonier, A.: Correcting
non-linearity and slope effects in the estimation of the leaf area index of
forests from hemispherical photographs, Agr. Forest Meteorol., 144,
236–242, https://doi.org/10.1016/j.agrformet.2007.02.004, 2007.
Simó, G., Martínez-Villagrasa, D., Jiménez, M. A., and Cuxart,
J.: Impact of the Surface–Atmosphere Variables on the Relation between Air
and Land Surface Temperatures, Pure Appl. Geophys., 175, 3939–3953,
https://doi.org/10.1007/s00024-018-1930-x, 2018.
Siriri, D., Wilson, J., Coe, R., Tenywa, M. M., Bekunda, M. A., Ong, C. K.
and Black, C. R.: Trees improve water storage and reduce soil evaporation in
agroforestry systems on bench terraces in SW Uganda, Agrofor. Syst., 87,
45–58, https://doi.org/10.1007/s10457-012-9520-x, 2013.
Skole, D. L.., Mbow, C., Mugabowindekwe, M., Brandt, M. S., and Samek, J.
H.: Trees outside forests as natural climate solutions, Nat. Clim. Change,
11, 1013–1016, https://doi.org/10.1038/s41558-021-01230-3, 2021.
Thijs, K. W., Aerts, R., van der Moortele, P., Aben, J., Musila, W.,
Pellikka, P., Gulinck, H., and Muys, B.: Trees in a human-modified tropical
landscape: Species and trait composition and potential ecosystem services,
Landscape Urban Plan., 144, 49–58,
https://doi.org/10.1016/j.landurbplan.2015.07.015, 2015.
Thimonier, A., Sedivy, I., and Schleppi, P.: Estimating leaf area index in
different types of mature forest stands in Switzerland: a comparison of
methods, Eur. J. Forest Res., 129, 543562,
https://doi.org/10.1007/s10342-009-0353-8, 2010.
Tuure, J., Korpela, A., Hautala, M., Hakojärvi, M., Mikkola, H.,
Räsänen, M., Duplissy, J., Pellikka, P., Kulmala, M.,
Petäjä, T., and Alakukku, L.: Comparison of surface foil materials
and dew collectors location in an arid area: a one-year experiment in Kenya,
Agr. Forest Meteorol. 276–277, 107613,
https://doi.org/10.1016/j.agrformet.2019.06.012, 2019.
Unruh, J. D., Houghton, R. A., and Lefebvre, P. A.: Carbon storage in
agroforestry: an estimate for sub-Saharan Africa, Clim. Res., 3, 39–52,
1993.
USGS: Landsat 8 OLI and TIRS Calibration Notices:
https://www.usgs.gov/land-resources/nli/landsat/landsat-8-oli-and-tirs-calibration-notices
(last access: 17 February 2020), 2017.
Wachiye, S., Merbold, L., Vesala, T., Rinne, J., Räsänen, M.,
Leitner, S., and Pellikka, P.: Soil greenhouse gas emissions under different
land-use types in savanna ecosystems of Kenya, Biogeosciences, 17,
2149–2167, https://doi.org/10.5194/bg-17-2149-2020, 2020.
Wanderley, R. L., Dominigues, L. M., Joly, C. A., and da Rocha, H. R.:
Relationship between land surface temperature and fraction of anthropized
area in the Atlantic forest region, Brazil, PLoS One, 14, e0225443,
https://doi.org/10.1371/journal.pone.0225443, 2019.
Wang, L., Lu, Y., and Yao, Y.: Comparison of Three Algorithms for the
Retrieval of Land Surface Temperature from Landsat 8 Images, Sensors, 19,
5049, https://doi.org/10.3390/s19225049, 2019.
Wild, J., Kopecký, M., Maeck, M., Sanda, M., Jankovec, J., and Haase,
T.: Climate at ecologically relevant scales: A new temperature and soil
moisture logger for long-term microclimate measurement, Agr. Forest
Meteorol., 268, 40–47, https://doi.org/10.1016/j.agrformet.2018.12.018,
2019.
Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D., and Coomes, D.:
Advances in Microclimate Ecology Arising from Remote Sensing, Trends Ecol.
Evol., 34, 327–341, https://doi.org/10.1016/j.tree.2018.12.012, 2019.
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M., Marek, M., Naaf, T., Nagel, T. A., Ortmann-Ajkai, A., Petřík, P., Pielech, R., Reczyńska, K., Schmidt, W., Standovár, T., Świerkosz, K., Teleki, B., Vild, O., Wulf, M., and Coomes, D.: Forest microclimate dynamics
drive plant responses to warming, Science, 368, 772–775,
https://doi.org/10.1126/science.aba6880, 2020.
Zeng, Z., Wang, D., Yang, L., Wu, J., Ziegler, A. D., Liu, M., Ciais, P., Searchinger, T. D., Yang, Z-L., Chen, D., Chen, A., Li, L. Z. X., Piao, S., Taylor, D., Cai, X., Pan, M., Peng, L., Lin, P., Gower, D., Feng, Y., Zheng, C., Guan, K., Lian, X., Wang, T., Wang, L., Jeong, S-J., Wei, Z., Sheffield, J., Caylor, K., and Wood, E. F.: Deforestation-induced warming over tropical mountain regions regulated by elevation, Nat. Geosci., 14, 23–29, https://doi.org/10.1038/s41561-020-00666-0, 2021.
Zomer, R. J., Trabucco, A., Coe, R., Place, F., van Noordwijk, M., and Xu,
J. C.: Trees on farms: an update and reanalysis of agroforestry's global
extent and socio-ecological characteristics. Working Paper 179, World
Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Bogor,
Indonesia, https://doi.org/10.5716/WP14064.pdf, 2014.
Zschauer K.: Households energy supply and the use of fuelwood in the Taita
Hills, Kenya, MSc thesis, Department of Geosciences and Geography,
University of Helsinki, Finland, 101 pp.,
http://urn.fi/URN:NBN:fi-fe201201311271 (last access: 20 June 2022), 2012.
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees...
Altmetrics
Final-revised paper
Preprint