Articles | Volume 20, issue 7
https://doi.org/10.5194/bg-20-1459-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1459-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Role of formation and decay of seston organic matter in the fate of methylmercury within the water column of a eutrophic lake
Laura Balzer
CORRESPONDING AUTHOR
Institute for Geoecology, Environmental Geochemistry Group,
Technische Universität Braunschweig, 38106 Braunschweig, Germany
Carluvy Baptista-Salazar
Department of Environmental Science, Stockholm University, 106 91
Stockholm, Sweden
Sofi Jonsson
Department of Environmental Science, Stockholm University, 106 91
Stockholm, Sweden
Harald Biester
Institute for Geoecology, Environmental Geochemistry Group,
Technische Universität Braunschweig, 38106 Braunschweig, Germany
Related authors
No articles found.
Alexander Land, Aleta Neugebauer, Jürgen Franzaring, Petra Schmidt, and Harald Biester
EGUsphere, https://doi.org/10.5194/egusphere-2025-2325, https://doi.org/10.5194/egusphere-2025-2325, 2025
Short summary
Short summary
Trees take up mercury through their leaves and enrich it in their tree-rings . We investigated tree-ring records of oak and Douglas fir in Germany reaching back ~120 years. We have found that the overall magnitude of mercury loads in trees are determined by local atmospheric Hg concentrations while changes in mercury uptake are controlled by climate. Oak and Douglas fir show different Hg records through time as a results of different adaptation strategies to high temperatures and drought.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Cited articles
Alldredge, A. L. and Cohen, Y.: Can microscale chemical patches persist in
the sea? Microelectrode study of marine snow, fecal pellets, Science, 235, 689–691, https://doi.org/10.1126/science.235.4789.689, 1987.
Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.: Global niche of marine
anaerobic metabolisms expanded by particle microenvironments, Nat. Geosci.,
11, 263–268, https://doi.org/10.1038/s41561-018-0081-0, 2018.
Biester, H., Pérez-Rodríguez, M., Gilfedder, B.-S., Martínez
Cortizas, A., and Hermanns, Y.-M.: Solar irradiance and primary productivity
controlled mercury accumulation in sediments of a remote lake in the
Southern Hemisphere during the past 4000 years, Limnol. Oceanogr., 63,
540–549, https://doi.org/10.1002/lno.10647, 2018.
Bouchet, S., Amouroux, D., Rodriguez-Gonzalez, P., Tessier, E., Monperrus,
M., Thouzeau, G., Clavier, J., Amice, E., Deborde, J., Bujan, S., Grall, J.,
and Anschutz, P.: MMHg production and export from intertidal sediments to
the water column of a tidal lagoon (Arcachon Bay, France), Biogeochemistry,
114, 341–358, https://doi.org/10.1007/s10533-012-9815-z, 2013.
Chen, C. Y. and Folt, C. L.: High Plankton Densities Reduce Mercury
Biomagnification, Environ. Sci. Technol., 39, 115–121,
https://doi.org/10.1021/es0403007, 2005.
Cossa, D., Martin, J.-M., Takayanagi, K., and Sanjuan, J.: The distribution
and cycling of mercury species in the western Mediterranean, Deep-Sea Res. Pt.
II, 44, 721–740, https://doi.org/10.1016/S0967-0645(96)00097-5,
1997.
Cossa, D., Heimbürger, L.-E., Lannuzel, D., Rintoul, S. R., Butler, E.
C., Bowie, A. R., Averty, B., Watson, R. J., and Remenyi, T.: Mercury in the
Southern Ocean, Geochim. Cosmochim. Ac., 75, 4037–4052,
https://doi.org/10.1016/j.gca.2011.05.001, 2011.
Deutsches Institut für Normung: DIN 38409-60: Deutsche Einheitsverfahren
zur Wasser-, Abwasser- und Schlammuntersuchung – Summarische Wirkungs- und
Stoffkenngrößen (Gruppe H) – Teil 60: Photometrische Bestimmung der
Chlorophyll-a-Konzentration in Wasser (H 60), Beuth Verlag GmbH, 2015.
Eckley, C. S., Watras, C. J., Hintelmann, H., Morrison, K., Kent, A. D., and
Regnell, O.: Mercury methylation in the hypolimnetic waters of lakes with
and without connection to wetlands in northern Wisconsin, Can. J. Fish.
Aquat. Sci., 62, 400–411, https://doi.org/10.1139/f04-205, 2005.
Fleming, E. J., Mack, E. E., Green, P. G., and Nelson, D. C.: Mercury
methylation from unexpected sources: molybdate-inhibited freshwater
sediments and an iron-reducing bacterium, Appl. Environ. Microb., 72,
457–464, https://doi.org/10.1128/AEM.72.1.457-464.2006, 2006.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath,
G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.:
Early oxidation of organic matter in pelagic sediments of the eastern
equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43,
1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Gallorini, A. and Loizeau, J.-L.: Mercury methylation in oxic aquatic
macro-environments: a review, J. Limnol., 80, https://doi.org/10.4081/jlimnol.2021.2007,
2021.
Gallorini, A. and Loizeau, J.-L.: Lake snow as a mercury methylation
micro-environment in the oxic water column of a deep peri-alpine lake,
Chemosphere, 299, 134306, https://doi.org/10.1016/j.chemosphere.2022.134306, 2022.
Gascón Díez, E., Loizeau, J.-L., Cosio, C., Bouchet, S., Adatte,
T., Amouroux, D., and Bravo, A. G.: Role of Settling Particles on Mercury
Methylation in the Oxic Water Column of Freshwater Systems, Environ. Sci.
Technol., 50, 11672–11679, https://doi.org/10.1021/acs.est.6b03260, 2016.
Gascón Díez, E., Graham, N. D., and Loizeau, J.-L.: Total and
methyl-mercury seasonal particulate fluxes in the water column of a large
lake (Lake Geneva, Switzerland), Environ. Sci. Pollut. R. Int., 25,
21086–21096, https://doi.org/10.1007/s11356-018-2252-3, 2018.
Gilmour, C. C., Henry, E. A., and Mitchell, R.: Sulfate stimulation of
mercury methylation in freshwater sediments, Environ. Sci. Technol., 26,
2281–2287, https://doi.org/10.1021/es00035a029, 1992.
Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D.,
Somenahally, A. C., Johs, A., Hurt, R. A., Bailey, K. L., and Elias, D. A.:
Mercury methylation by novel microorganisms from new environments, Environ.
Sci. Technol., 47, 11810–11820, https://doi.org/10.1021/es403075t, 2013.
Gordon, D. C.: Distribution of particulate organic carbon and nitrogen at an
oceanic station in the central Pacific, Deep-Sea Res. Oceanogr. Abstr., 18,
1127–1134, https://doi.org/10.1016/0011-7471(71)90098-2, 1971.
Grossart, H.-P. and Simon, M.: Limnetic macroscopic organic aggregates (lake
snow): Occurrence, characteristics, and microbial dynamics in Lake
Constance, Limnol. Oceanogr., 38, 532–546, https://doi.org/10.4319/lo.1993.38.3.0532,
1993.
Hammerschmidt, C. R. and Bowman, K. L.: Vertical methylmercury distribution
in the subtropical North Pacific Ocean, Mar. Chem., 132–133, 77–82,
https://doi.org/10.1016/j.marchem.2012.02.005, 2012.
Hammerschmidt, C. R., Fitzgerald, W. F., Lamborg, C. H., Balcom, P. H., and
Visscher, P. T.: Biogeochemistry of methylmercury in sediments of Long
Island Sound, Mar. Chem., 90, 31–52, https://doi.org/10.1016/j.marchem.2004.02.024,
2004.
Heimbürger, L.-E., Cossa, D., Marty, J.-C., Migon, C., Averty, B.,
Dufour, A., and Ras, J.: Methyl mercury distributions in relation to the
presence of nano- and picophytoplankton in an oceanic water column (Ligurian
Sea, North-western Mediterranean), Geochim. Cosmochim. Ac., 74, 5549–5559,
https://doi.org/10.1016/j.gca.2010.06.036, 2010.
Heimbürger, L.-E., Sonke, J. E., Cossa, D., Point, D., Lagane, C.,
Laffont, L., Galfond, B. T., Nicolaus, M., Rabe, B., and van der Loeff, M.
R.: Shallow methylmercury production in the marginal sea ice zone of the
central Arctic Ocean, Sci. Rep., 5, 10318, https://doi.org/10.1038/srep10318, 2015.
Higginson, M. J.: Geochemical Proxies (Non-Isotopic), in: Encyclopedia of
Paleoclimatology and Ancient Environments, edited by: Gornitz, V., Encyclopedia
of Earth Sciences Series, Springer Netherlands, Dordrecht, 341–354, https://doi.org/10.1007/978-1-4020-4411-3_89, 2009.
Hollweg, T. A., Gilmour, C. C., and Mason, R. P.: Methylmercury production
in sediments of Chesapeake Bay and the mid-Atlantic continental margin, Mar.
Chem., 114, 86–101, https://doi.org/10.1016/j.marchem.2009.04.004, 2009.
Jensen, S. and Jernelöv, A.: Biological methylation of mercury in
aquatic organisms, Nature, 223, 753–754, https://doi.org/10.1038/223753a0, 1969.
Kirk, J. L., St Louis, V. L., Hintelmann, H., Lehnherr, I., Else, B., and
Poissant, L.: Methylated mercury species in marine waters of the Canadian
high and sub Arctic, Environ. Sci. Technol., 42, 8367–8373,
https://doi.org/10.1021/es801635m, 2008.
Lenz, J.: Seston and Its Main Components, in: Microbial Ecology of a
Brackish Water Environment, edited by: Billings, W. D., Golley, F., Lange, O. L.,
Olson, J. S., and Rheinheimer, G., Ecological Studies, Springer Berlin
Heidelberg, Berlin, Heidelberg, 37–60, https://doi.org/10.1007/978-3-642-66791-6_5, 1977.
Liang, X., Zhu, N., Johs, A., Chen, H., Pelletier, D. A., Zhang, L., Yin,
X., Gao, Y., Zhao, J., and Gu, B.: Mercury Reduction, Uptake, and Species
Transformation by Freshwater Alga Chlorella vulgaris under Sunlit and Dark
Conditions, Environ. Sci. Technol., 56, 4961–4969,
https://doi.org/10.1021/acs.est.1c06558, 2022.
Mauro, J. B. N., Guimarães, J. R. D., Hintelmann, H., Watras, C. J.,
Haack, E. A., and Coelho-Souza, S. A.: Mercury methylation in macrophytes,
periphyton, and water – comparative studies with stable and radio-mercury
additions, Anal. Bioanal. Chem., 374, 983–989,
https://doi.org/10.1007/s00216-002-1534-1, 2002.
Meyers, P. A. and Eadie, B. J.: Sources, degradation and recycling of
organic matter associated with sinking particles in Lake Michigan, Org.
Geochem., 20, 47–56, https://doi.org/10.1016/0146-6380(93)90080-U, 1993.
Meyers, P. A. and Lallier-Vergés, E.: Lacustrine Sedimentary Organic
Matter Records of Late Quaternary Paleoclimates, J. Paleolimnol., 21,
345–372, https://doi.org/10.1023/A:1008073732192, 1999.
Müller, P.: Ratios in Pacific deep-sea sediments: Effect of inorganic
ammonium and organic nitrogen compounds sorbed by clays, Geochim. Cosmochim.
Ac., 41, 765–776, https://doi.org/10.1016/0016-7037(77)90047-3, 1977.
Oguz, T., Ducklow, H. W., and Malanotte-Rizzoli, P.: Modeling distinct
vertical biogeochemical structure of the Black Sea: Dynamical coupling of
the oxic, suboxic, and anoxic layers, Global Biogeochem. Cy., 14,
1331–1352, https://doi.org/10.1029/1999GB001253, 2000.
Ortiz, V. L., Mason, R. P., and Ward, J. E.: An examination of the factors
influencing mercury and methylmercury particulate distributions, methylation
and demethylation rates in laboratory-generated marine snow, Mar. Chem.,
177, 753–762, https://doi.org/10.1016/j.marchem.2015.07.006, 2015.
Peterson, B. D., McDaniel, E. A., Schmidt, A. G., Lepak, R. F., Janssen, S.
E., Tran, P. Q., Marick, R. A., Ogorek, J. M., DeWild, J. F., Krabbenhoft,
D. P., and McMahon, K. D.: Mercury Methylation Genes Identified across
Diverse Anaerobic Microbial Guilds in a Eutrophic Sulfate-Enriched Lake,
Environ. Sci. Technol., 54, 15840–15851, https://doi.org/10.1021/acs.est.0c05435, 2020.
Pickhardt, P. C. and Fisher, N. S.: Accumulation of inorganic and
methylmercury by freshwater phytoplankton in two contrasting water bodies,
Environ. Sci. Technol., 41, 125–131, https://doi.org/10.1021/es060966w, 2007.
Pickhardt, P. C., Folt, C. L., Chen, C. Y., Klaue, B., and Blum, J. D.:
Algal blooms reduce the uptake of toxic methylmercury in freshwater food
webs, P. Natl. Acad. Sci. USA, 99, 4419–4423,
https://doi.org/10.1073/pnas.072531099, 2002.
Radbourne, A. D. and Ryves, D. B.: Experimental assessment and implications
of long-term within-trap mineralization of seston in lake trapping studies,
Limnol. Oceanogr. Meth., 18, 327–334, https://doi.org/10.1002/lom3.10369, 2020.
Raven, M. R., Keil, R. G., and Webb, S. M.: Microbial sulfate reduction and
organic sulfur formation in sinking marine particles, Science, 371, 178–181, https://doi.org/10.1126/science.abc6035, 2021.
Ravichandran, M.: Interactions between mercury and dissolved organic
matter – a review, Chemosphere, 55, 319–331,
https://doi.org/10.1016/j.chemosphere.2003.11.011, 2004.
Robinson, J. B. and Tuovinen, O. H.: Mechanisms of microbial resistance and
detoxification of mercury and organomercury compounds: physiological,
biochemical, and genetic analyses, Microbiol. Rev., 48, 95–124, 1984.
Saino, T. and Hattori, A.: Geographical variation of the water column
distrubution of suspended particulate organic nitrogen and its 15N natural
abundance in the Pacific and its marginal seas, Deep-Sea Res. Pt. A, 34, 807–827, https://doi.org/10.1016/0198-0149(87)90038-0, 1987.
Schartup, A. T., Balcom, P. H., Soerensen, A. L., Gosnell, K. J., Calder, R.
S. D., Mason, R. P., and Sunderland, E. M.: Freshwater discharges drive high
levels of methylmercury in Arctic marine biota, P. Natl. Acad. Sci.
USA, 112, 11789–11794, https://doi.org/10.1073/pnas.1505541112, 2015a.
Schartup, A. T., Ndu, U., Balcom, P. H., Mason, R. P., and Sunderland, E.
M.: Contrasting effects of marine and terrestrially derived dissolved
organic matter on mercury speciation and bioavailability in seawater,
Environ. Sci. Technol., 49, 5965–5972, https://doi.org/10.1021/es506274x, 2015b.
Schütze, M., Gatz, P., Gilfedder, B.-S., and Biester, H.: Why productive
lakes are larger mercury sedimentary sinks than oligotrophic brown water
lakes, Limnol. Oceanogr., 66, 1316–1332, https://doi.org/10.1002/lno.11684, 2021.
Shanks, A. L. and Reeder, M. L.: Reducing microzones and sulfide production
in marine snow, Mar. Ecol.-Prog. Ser., 96, 43–47, 1993.
Soerensen, A. L., Schartup, A. T., Skrobonja, A., Bouchet, S., Amouroux, D.,
Liem-Nguyen, V., and Björn, E.: Deciphering the Role of Water Column
Redoxclines on Methylmercury Cycling Using Speciation Modeling and
Observations From the Baltic Sea, Global Biogeochem. Cy., 32, 1498–1513,
https://doi.org/10.1029/2018GB005942, 2018.
Sunderland, E. M., Gobas, F. A., Heyes, A., Branfireun, B. A., Bayer, A. K.,
Cranston, R. E., and Parsons, M. B.: Speciation and bioavailability of
mercury in well-mixed estuarine sediments, Mar. Chem., 90, 91–105,
https://doi.org/10.1016/j.marchem.2004.02.021, 2004.
Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., and
Landing, W. M.: Mercury sources, distribution, and bioavailability in the
North Pacific Ocean: Insights from data and models, Global Biogeochem.
Cy., 23, GB2010, https://doi.org/10.1029/2008GB003425, 2009.
Topping, G. and Davies, I. M.: Methylmercury production in the marine water
column, Nature, 290, 243–244, https://doi.org/10.1038/290243a0, 1981.
USGS-Mercury Research Laboratory: Analysis of Methylmercury in Biota by Cold
Vapor Atomic Fluorescence Detection with the Brooks-Rand “MERX” Automated
Mercury Analytical System, 2016.
Wang, K., Munson, K. M., Beaupré-Laperrière, A., Mucci, A.,
Macdonald, R. W., and Wang, F.: Subsurface seawater methylmercury maximum
explains biotic mercury concentrations in the Canadian Arctic, Sci. Rep., 8,
14465, https://doi.org/10.1038/s41598-018-32760-0, 2018.
Watras, C. J. and Bloom, N. S.: The Vertical Distribution of Mercury Species
in Wisconsin Lakes: Accumulation in Plankton Layers, in: Mercury Pollution:
Integration and Synthesis, edited by: Watras, C. J. and Huckabee, J. W., Lewis Chelsa,
MI, 137–151, 1994.
Watras, C. J., Bloom, N. S., Claas, S. A., Morrison, K. A., Gilmour, C. C.,
and Craig, S. R.: Methylmercury production in the anoxic hypolimnion of a
Dimictic Seepage Lake, Water Air Soil Pollut., 80, 735–745,
https://doi.org/10.1007/BF01189725, 1995.
Zaferani, S., Pérez-Rodríguez, M., and Biester, H.: Diatom ooze – A
large marine mercury sink, Science, 361, 797–800,
https://doi.org/10.1126/science.aat2735, 2018.
Zhang, T., Kim, B., Levard, C., Reinsch, B. C., Lowry, G. V., Deshusses, M.
A., and Hsu-Kim, H.: Methylation of mercury by bacteria exposed to
dissolved, nanoparticulate, and microparticulate mercuric sulfides, Environ.
Sci. Technol., 46, 6950–6958, https://doi.org/10.1021/es203181m, 2012.
Short summary
Toxic methylmercury (MeHg) in lakes can be enriched in fish and is harmful for humans. Phytoplankton is the entry point for MeHg into the aquatic food chain. We investigated seasonal MeHg concentrations in plankton of a productive lake. Our results show that high amounts of MeHg occur in algae and suspended matter in lakes and that productive lakes are hot spots of MeHg formation, which is mainly controlled by decomposition of algae organic matter and water-phase redox conditions.
Toxic methylmercury (MeHg) in lakes can be enriched in fish and is harmful for humans....
Altmetrics
Final-revised paper
Preprint