Articles | Volume 20, issue 8
https://doi.org/10.5194/bg-20-1621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Masihullah Hasanyar
CORRESPONDING AUTHOR
Geosciences and Geoengineering Department, Mines Paris – PSL, 35 Rue Saint-Honoré, 77300 Fontainebleau, France
Thomas Romary
Geosciences and Geoengineering Department, Mines Paris – PSL, 35 Rue Saint-Honoré, 77300 Fontainebleau, France
Shuaitao Wang
UMR Metis, Sorbonne Université, CNRS, EPHE, 75005 Paris, France
Nicolas Flipo
Geosciences and Geoengineering Department, Mines Paris – PSL, 35 Rue Saint-Honoré, 77300 Fontainebleau, France
Related authors
No articles found.
Shuaitao Wang, Vincent Thieu, Gilles Billen, Josette Garnier, Marie Silvestre, Audrey Marescaux, Xingcheng Yan, and Nicolas Flipo
Geosci. Model Dev., 17, 449–476, https://doi.org/10.5194/gmd-17-449-2024, https://doi.org/10.5194/gmd-17-449-2024, 2024
Short summary
Short summary
This paper presents unified RIVE v1.0, a unified version of the freshwater biogeochemistry model RIVE. It harmonizes different RIVE implementations, providing the referenced formalisms for microorganism activities to describe full biogeochemical cycles in the water column (e.g., carbon, nutrients, oxygen). Implemented as open-source projects in Python 3 (pyRIVE 1.0) and ANSI C (C-RIVE 0.32), unified RIVE v1.0 promotes and enhances collaboration among research teams and public services.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Cited articles
Bailey, R. T. and Ahmadi, M.: Spatial and Temporal Variability of In-Stream
Water Quality Parameter Influence on Dissolved Oxygen and Nitrate within a
Regional Stream Network, Ecol. Model., 277, 87–96,
https://doi.org/10.1016/j.ecolmodel.2014.01.015, 2014. a, b, c, d
Billen, G.: Protein Degradation in Aquatic Environments, in: Microbial
Enzymes in Aquatic Environments, edited by: Brock, T. D. and
Chróst, R. J., 123–143, Springer New York, New York, NY,
https://doi.org/10.1007/978-1-4612-3090-8_7, 1991. a
Billen, G., Lancelot, C., Becker, E., and Servais, P.: Modelling Microbial
Processes (Phyto- and Bacterioplankton) in the Schelde Estuary,
Hydrobiological Bulletin, 22, 43–55, https://doi.org/10.1007/BF02256781, 1988. a
Billen, G., Garnier, J., and Hanset, P.: Modelling Phytoplankton Development
in Whole Drainage Networks: The RIVERSTRAHLER Model Applied to the
Seine River System, Hydrobiologia, 289, 119–137,
https://doi.org/10.1007/BF00007414, 1994. a, b, c
Billen, G., Garnier, J., and Rousseau, V.: Nutrient Fluxes and Water Quality in
the Drainage Network of the Scheldt Basin over the Last 50 Years,
Hydrobiologia, 540, 47–67, https://doi.org/10.1007/s10750-004-7103-1, 2005. a
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in
the geosciences: An overview of methods, issues, and perspectives, WIRES Clim. Change, 9, e535, https://doi.org/10.1002/wcc.535,
2018. a
Cho, J., Her, Y., and Bosch, D.: Sensitivity of Simulated Conservation Practice
Effectiveness to Representation of Field and In-Stream Processes in the
Little River Watershed, Environ. Model. Assess., 22, 159–173,
https://doi.org/10.1007/s10666-016-9530-6, 2017. a
Cox, B.: A Review of Currently Available In-Stream Water-Quality Models and
Their Applicability for Simulating Dissolved Oxygen in Lowland Rivers,
Sci. Total Environ., 314–316, 335–377,
https://doi.org/10.1016/S0048-9697(03)00063-9, 2003. a
Crump, B. C., Kling, G. W., Bahr, M., and Hobbie, J. E.: Bacterioplankton
Community Shifts in an Arctic Lake Correlate with Seasonal
Changes in Organic Matter Source, Appl. Environ.
Microbiol., 69, 2253–2268, https://doi.org/10.1128/AEM.69.4.2253-2268.2003, 2003. a, b
Demars, B., Thompson, J., and Manson, J.: Stream Metabolism and the Open Diel
Oxygen Method: Principles, Practice, and Perspectives, Limnol.
Oceanogr.-Meth., 13, 356–374, https://doi.org/10.1002/lom3.10030, 2015. a
Dixon, W., Smyth, G. K., and Chiswell, B.: Optimized Selection of River
Sampling Sites, Water Res., 33, 971–978,
https://doi.org/10.1016/S0043-1354(98)00289-9, 1999. a
Do, H. T., Lo, S.-L., Chiueh, P.-T., and Phan Thi, L. A.: Design of Sampling
Locations for Mountainous River Monitoring, Environ. Model.
Softw., 27–28, 62–70, https://doi.org/10.1016/j.envsoft.2011.09.007, 2012. a
Escoffier, N., Bensoussan, N., Vilmin, L., Flipo, N., Rocher, V., David, A.,
Métivier, F., and Groleau, A.: Estimating Ecosystem Metabolism from
Continuous Multi-Sensor Measurements in the Seine River, Environ. Sci.
Pollut. R., 25, 23451–23467, https://doi.org/10.1007/s11356-016-7096-0, 2018. a
Even, S., Poulin, M., Garnier, J., Billen, G., Servais, P., Chesterikoff, A.,
and Coste, M.: River Ecosystem Modelling: Application of the PROSE Model
to the Seine River (France), Hydrobiologia, 373, 27–45,
https://doi.org/10.1023/A:1017045522336, 1998. a, b
Even, S., Poulin, M., Mouchel, J.-M., Seidl, M., and Servais, P.: Modelling
Oxygen Deficits in the Seine River Downstream of Combined Sewer
Overflows, Ecol. Model., 173, 177–196,
https://doi.org/10.1016/j.ecolmodel.2003.08.019, 2004. a, b, c, d
Even, S., Mouchel, J. M., Servais, P., Flipo, N., Poulin, M., Blanc, S.,
Chabanel, M., and Paffoni, C.: Modeling the impacts of Combined Sewer
Overflows on the river Seine water quality, Sci. Total
Environ., 375, 140–151, https://doi.org/10.1016/j.scitotenv.2006.12.007, 2007. a, b
Flipo, N.: Modélisation intégrée des transferts d'azote dans les
aquifères et les rivières: Application au bassin du Grand Morin,
PhD thesis, CIG, https://pastel.archives-ouvertes.fr/pastel-00001432 (last access: 24 April 2023), 2005. a
Flipo, N., Even, S., Poulin, M., Tusseau-Vuillemin, M.-H., Ameziane, T., and
Dauta, A.: Biogeochemical Modelling at the River Scale: Plankton and
Periphyton Dynamics: Grand Morin Case Study, France, Ecol.
Model., 176, 333–347, https://doi.org/10.1016/j.ecolmodel.2004.01.012, 2004. a
Flipo, N., Rabouille, C., Poulin, M., Even, S., Tusseau-Vuillemin, M.-H., and
Lalande, M.: Primary Production in Headwater Streams of the Seine Basin:
The Grand Morin River Case Study, Sci. Total Environ., 375,
98–109, https://doi.org/10.1016/j.scitotenv.2006.12.015, 2007. a
Garnier, J., Billen, G., Servais, P., and Servais, P.: Physiological
Characteristics and Ecological Role of Small and Large Sized Bacteria in a
Polluted River (Seine River, France), Arch. Hydrobiol. Beih., 37,
83–94, 1992. a
Garnier, J., Billen, G., and Coste, M.: Seasonal Succession of Diatoms and
Chlorophyceae in the Drainage Network of the Seine River:
Observation and Modeling, Limnol. Oceanogr., 40, 750–765,
https://doi.org/10.4319/lo.1995.40.4.0750, 1995. a, b
Garnier, J., Billen, G., and Palfner, L.: Understanding the Oxygen Budget and
Related Ecological Processes in the River Mosel: The RIVERSTRAHLER
Approach, in: Man and River Systems, edited by: Garnier, J. and Mouchel,
J.-M., 151–166, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-017-2163-9_17, 1999. a, b
Garnier, J., Billen, G., Hannon, E., Fonbonne, S., Videnina, Y., and Soulie,
M.: Modeling transfer and retention of nutrients in the drainage network of
the Danube River, Estuar. Coast. Shelf S., 54, 285–308, 2002. a
Garnier, J., Brion, N., Callens, J., Passy, P., Deligne, C., Billen, G.,
Servais, P., and Billen, C.: Modeling Historical Changes in Nutrient Delivery
and Water Quality of the Zenne River (1790s–2010): The
Role of Land Use, Waterscape and Urban Wastewater Management, J.
Marine Syst., 128, 62–76, https://doi.org/10.1016/j.jmarsys.2012.04.001, 2013. a
Garnier, J., Marescaux, A., Guillon, S., Vilmin, L., Rocher, V., Billen, G.,
Thieu, V., Silvestre, M., Passy, P., Raimonet, M., Groleau, A., Théry,
S., Tallec, G., and Flipo, N.: Ecological Functioning of the Seine
River: From Long-Term Modelling Approaches to High-Frequency
Data Analysis, in: The Handbook of Environmental Chemistry, edited by: Flipo, N., Labadie, P., and Lestel, L.,
1–28, Springer Berlin Heidelberg, https://doi.org/10.1007/698_2019_379, 2020. a, b, c, d, e
Garvey, J. E., Whiles, M. R., and Streicher, D.: A Hierarchical Model for
Oxygen Dynamics in Streams, Can. J. Fish. Aquat. Sci., 64, 1816–1827,
https://doi.org/10.1139/f07-144, 2007. a
Goffin, A., Guérin, S., Rocher, V., and Varrault, G.: Caractérisation de
l'évolution de la matière organique dissoute de l'amont à l'aval de
l'agglomération parisienne pendant une année hydrologique par
spectrométrie de fluorescence 3D, Tech. rep., PIREN-Seine phase VII, https://doi.org/10.26047/6z21-5788,
2017. a
Hasanyar, M., Flipo, N., Romary, T., Wang, S., and Yari, A.: Rôle de la
matière organique dans le métabolisme des rivières à bas débit,
PIREN-Seine phase 8 – Technical report, PIREN-Seine, https://doi.org/10.26047/fqt4-gx71, 2020. a, b, c
Hasanyar, M., Wang, S., and Flipo, N.: Biogeosciences paper data for Hasanyar et al. “How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?”,
Zenodo [data set], https://doi.org/10.5281/zenodo.7851169, 2023b. a
Huang, J., Yin, H., Chapra, S., and Zhou, Q.: Modelling Dissolved Oxygen
Depression in an Urban River in China, Water, 9, 520,
https://doi.org/10.3390/w9070520, 2017. a
Hullar, M. A. J., Kaplan, L. A., and Stahl, D. A.: Recurring Seasonal
Dynamics of Microbial Communities in Stream Habitats, Appl.
Environ. Microbiol., 72, 713–722,
https://doi.org/10.1128/AEM.72.1.713-722.2006, 2006. a, b
Hutchins, M., Harding, G., Jarvie, H., Marsh, T., Bowes, M., and Loewenthal,
M.: Intense Summer Floods May Induce Prolonged Increases in Benthic
Respiration Rates of More than One Year Leading to Low River Dissolved
Oxygen, Journal of Hydrology X, 8, 100056,
https://doi.org/10.1016/j.hydroa.2020.100056, 2020. a
Landa, M., Cottrell, M. T., Kirchman, D. L., Blain, S., and Obernosterer, I.:
Changes in Bacterial Diversity in Response to Dissolved Organic
Matter Supply in a Continuous Culture Experiment, Aquat. Microb.
Ecol., 69, 157–168, https://doi.org/10.3354/ame01632, 2013. a
Luu, M. T., Dinh, T. D., Trinh, D. A., and Doc, N. T.: Water Quality in an
Urbanized River Basin Impacted by Multi-Pollution Sources: From Comprehensive
Surveys to Modelling, ScienceAsia, 47, 86–95,
https://doi.org/10.2306/scienceasia1513-1874.2021.014, 2021. a
Matallana-Surget, S. and Wattiez, R.: Impact of Solar Radiation on Gene
Expression in Bacteria, Proteomes, 1, 70–86,
https://doi.org/10.3390/proteomes1020070, 2013. a
Nossent, J., Elsen, P., and Bauwens, W.: Sobol' Sensitivity Analysis of a
Complex Environmental Model, Environ. Modell. Softw., 26,
1515–1525, https://doi.org/10.1016/j.envsoft.2011.08.010, 2011. a
Odum, H. T.: Primary Production in Flowing Waters1, Limnol. Oceanogr.,
1, 102–117, https://doi.org/10.4319/lo.1956.1.2.0102, 1956. a, b
Park, H., Shah, S. S. A., Korshin, G., Angelidaki, I., and Choo, K.-H.: The
Impact of Sunlight on Fouling Behaviors and Microbial Communities in Membrane
Bioreactors, J. Membrane Sci., 672, 121443,
https://doi.org/10.1016/j.memsci.2023.121443, 2023. a
Parlanti, E., Wörz, K., Geoffroy, L., and Lamotte, M.: Dissolved Organic
Matter Fluorescence Spectroscopy as a Tool to Estimate Biological Activity in
a Coastal Zone Submitted to Anthropogenic Inputs, Org. Geochem., 31,
1765–1781, https://doi.org/10.1016/S0146-6380(00)00124-8, 2000. a
Parlanti, E., Morin, B., and Vacher, L.: Combined 3D-Spectrofluorometry,
High Performance Liquid Chromatography and Capillary Electrophoresis for the
Characterization of Dissolved Organic Matter in Natural Waters, Org.
Geochem., 33, 221–236, https://doi.org/10.1016/S0146-6380(01)00154-1, 2002. a
Polus, E., de Fouquet, C., Flipo, N., and Poulin, M.: Caractérisation
spatiale et temporelle de la qualité des ≪Masses d'Eau
Cours d'Eau≫ [Spatial and temporal characterization of “Stream Water Bodies” quality], Revue des Sciences de l'eau, 23, 415–429, https://doi.org/10.7202/045101ar,
2010. a
Pryet, A., Labarthe, B., Saleh, F., Akopian, M., and Flipo, N.: Reporting of
stream-aquifer flow distribution at the regional scale with a distributed
process-based model, Water Resour. Manag., 29, 139–159,
https://doi.org/10.1007/s11269-014-0832-7, 2015. a
Quynh, L. T. P., Garnier, G., Billen, G., Thiem, L. N., and Minh, C. V.:
Preminary results of riverstrahler model application to the red river system
(Vietnam), Vietnam Journal of Chemistry, 47, 110–115, https://doi.org/10.15625/4550, 2014. a
Raimonet, M., Vilmin, L., Flipo, N., Rocher, V., and Laverman, A.: Modelling
the fate of nitrite in an urbanized river using experimentally obtained
nitrifier growth parameters, Water Res., 73, 373–387,
https://doi.org/10.1016/j.watres.2015.01.026, 2015. a
Reusser, D. E., Buytaert, W., and Zehe, E.: Temporal dynamics of model
parameter sensitivity for computationally expensive models with the Fourier
amplitude sensitivity test, Water Resour. Res., 47, W07551,
https://doi.org/10.1029/2010WR009947, 2011. a
Seidl, M., Servais, P., Martaud, M., Gandouin, C., and Mouchel, J. M.: Organic
Carbon Biodegradability and Heterotrophic Bacteria along a Combined Sewer
Catchment during Rain Events, Water Sci. Technol., 37, 25–33,
https://doi.org/10.1016/S0273-1223(97)00752-X, 1998a. a, b
Seidl, M., Servais, P., and Mouchel, J.: Organic Matter Transport and
Degradation in the River Seine (France) after a Combined Sewer
Overflow, Water Res., 32, 3569–3580,
https://doi.org/10.1016/S0043-1354(98)00169-9, 1998b. a, b
Servais, P.: Modélisation de la biomasse et de l'activité bactérienne
dans la Meuse belge, Revue des Sciences de l'eau, 2, 543–563, https://doi.org/10.7202/705042ar, 1989. a
Servais, P. and Garnier, J.: Contribution of Heterotrophic Bacterial Production
to the Carbon Budget of the River Seine (France), Microb. Ecol., 25,
19–33, https://doi.org/10.1007/BF00182127, 1993. a, b
Servais, P., Barillier, A., and Garnier, J.: Determination of the Biodegradable
Fraction of Dissolved and Particulate Organic Carbon in Waters, Ann. Limnol.-Int. J. Lim., 31, 75–80, https://doi.org/10.1051/limn/1995005, 1995. a
Sferratore, A., Billen, G., Garnier, J., Smedberg, E., Humborg, C., and Rahm,
L.: Modelling nutrient fluxes from sub-arctic basins: Comparison of pristine
vs. dammed rivers, J. Marine Syst., 73, 236–249,
https://doi.org/10.1016/j.jmarsys.2007.10.012, 2008. a
Sobol, I. M.: Sensitivity Estimates for Nonlinear Mathematical Models,
Mathematical Modelling and Computational Experiments, 1, 407–414, 1993. a
Staehr, P., Bade, D., van de Bogert, M., Koch, G., Williamson, C., Hanson,
P., Cole, J., and Kratz, T.: Lake Metabolism and the Diel Oxygen Technique:
State of the Science, Limnol. Oceanogr.-Meth., 8, 628–644,
https://doi.org/10.4319/lom.2010.8.0628, 2010. a
Thieu, V., Billen, G., and Garnier, J.: Nutrient Transfer in Three Contrasting
NW European Watersheds: The Seine, Somme, and Scheldt Rivers.
A Comparative Application of the Seneque/Riverstrahler Model,
Water Res., 43, 1740–1754, https://doi.org/10.1016/j.watres.2009.01.014, 2009. a, b, c
Thieu, V., Garnier, J., and Billen, G.: Assessing the Effect of Nutrient
Mitigation Measures in the Watersheds of the Southern Bight of the
North Sea, Sci. Total Environ., 408, 1245–1255,
https://doi.org/10.1016/j.scitotenv.2009.12.031, 2010. a
Vanrolleghem, P., Borchardt, D., Henze, M., Rauch, W., Reichert, P., Shanahan,
P., and Somlyódy, L.: River Water Quality Model no.1
(RWQM1): III Biochemical submodel selection, Water Sci.
Technol., 43, 31–40, 2001. a
Vilmin, L., Flipo, N., and Poulin, M.: Le modèle de simulation
biogéochimique C-RIVE, Tech. rep., PIREN-Seine, https://doi.org/10.26047/txs7-tm11, 2012.
a
Vilmin, L., Flipo, N., de Fouquet, C., and Poulin, M.: Pluri-Annual Sediment
Budget in a Navigated River System: The Seine River (France), Sci. Total Environ., 502, 48–59, https://doi.org/10.1016/j.scitotenv.2014.08.110,
2015. a
Vilmin, L., Flipo, N., Escoffier, N., Rocher, V., and Groleau, A.: Carbon Fate
in a Large Temperate Human-Impacted River System: Focus on Benthic
Dynamics, Global Biogeochem. Cy., 30, 1086–1104,
https://doi.org/10.1002/2015GB005271, 2016. a, b, c, d
Vilmin, L., Flipo, N., Escoffier, N., and Groleau, A.: Estimation of the water
quality of a large urbanized river as defined by the European WFD: what is
the optimal sampling frequency?, Environ. Sci. Pollut. R., 25, 23485–23501,
https://doi.org/10.1007/s11356-016-7109-z, 2018. a
Wang, Q., Li, S., Jia, P., Qi, C., and Ding, F.: A Review of Surface
Water Quality Models, Sci. World J., 2013, e231768,
https://doi.org/10.1155/2013/231768, 2013. a
Wang, S.: Simulation Du Métabolisme de La Seine Par Assimilation de
Données En Continu, These de doctorat, Paris Sciences et Lettres, https://pastel.archives-ouvertes.fr/tel-02388690 (last access: 24 April 2023), 2019. a
Wang, S., Flipo, N., and Romary, T.: Oxygen Data Assimilation for Estimating
Micro-Organism Communities' Parameters in River Systems, Water Res., 165,
115021, https://doi.org/10.1016/j.watres.2019.115021, 2019. a
Wang, S., Flipo, N., Romary, T., and Hasanyar, M.: Particle Filter for High
Frequency Oxygen Data Assimilation in River Systems, Environ. Modell.
Softw., 151, 105382, https://doi.org/10.1016/j.envsoft.2022.105382, 2022. a, b, c, d
Wang, S., Vilmin, L., Hasanyar, M., and
Flipo, N.: C-RIVE, Zenodo [code], https://doi.org/10.5281/zenodo.7849609, 2023. a
Yang, C.-P., Lung, W.-S., Kuo, J.-T., and Liu, J.-H.: Water Quality
Modeling of a Hypoxic Stream, Pract. Period. Hazard. Toxic Radioact.
Waste Manage., 14, 115–123, https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000021, 2010. a
Short summary
The results of this study indicate that biodegradable dissolved organic matter is responsible for oxygen depletion at low flow during summer seasons when heterotrophic bacterial activity is so intense. Therefore, the dissolved organic matter must be well measured in the water monitoring networks in order to have more accurate water quality models. It also advocates for high-frequency data collection for better quantification of the uncertainties related to organic matter.
The results of this study indicate that biodegradable dissolved organic matter is responsible...
Altmetrics
Final-revised paper
Preprint