Articles | Volume 20, issue 8
https://doi.org/10.5194/bg-20-1635-2023
https://doi.org/10.5194/bg-20-1635-2023
Research article
 | 
26 Apr 2023
Research article |  | 26 Apr 2023

Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China

Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers

Related authors

Representing canopy structure dynamics within the LPJ-GUESS dynamic global vegetation model (revision 13221)
Jette Elena Stoebke, David Wårlind, Stefan Olin, Annemarie Eckes-Shephard, Bogdan Brzeziecki, Mikko Peltoniemi, and Thomas A. M. Pugh
EGUsphere, https://doi.org/10.5194/egusphere-2025-2995,https://doi.org/10.5194/egusphere-2025-2995, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Best practices in software development for robust and reproducible geoscientific models based on insights from the Global Carbon Project models
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733,https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Implementing a process-based representation of soil water movement in a second-generation dynamic vegetation model: application to dryland ecosystems (LPJ-GUESS-RE v1.0)
Wim Verbruggen, David Wårlind, Stéphanie Horion, Félicien Meunier, Hans Verbeeck, and Guy Schurgers
EGUsphere, https://doi.org/10.5194/egusphere-2025-1259,https://doi.org/10.5194/egusphere-2025-1259, 2025
Short summary
Savanna ecosystem structure and productivity along a rainfall gradient: the role of competition and stress tolerance mediated by plant functional traits
Prashant Paudel, Stefan Olin, Mark Tjoelker, Mikael Pontarp, Daniel Metcalfe, and Benjamin Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-3977,https://doi.org/10.5194/egusphere-2024-3977, 2025
Short summary

Cited articles

Batjes, N. H.: Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks, Geoderma, 269, 61–68, https://doi.org/10.1016/j.geoderma.2016.01.034, 2016. 
Cai, S., Zhao, X., Pittelkow, C. M., Fan, M., Zhang, X., and Yan, X.: Optimal nitrogen rate strategy for sustainable rice production in China, Nature, 615, 73–79, 10.1038/s41586-022-05678-x, 2023. 
Chen, F., Hou, L., Liu, M., Zheng, Y., Yin, G., Lin, X., Li, X., Zong, H., Deng, F., and Gao, J.: Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export, J. Geophys. Res.-Biogeo., 121, 451–465, 2016. 
Chen, Q., Huang, M., and Tang, X.: Eutrophication assessment of seasonal urban lakes in China Yangtze River Basin using Landsat 8-derived Forel-Ule index: A six-year (2013–2018) observation, Sci. Total Environ., 745, 135392, https://doi.org/10.1016/j.scitotenv.2019.135392, 2020. 
Chen, S., Ge, Q., Chu, G., Xu, C., Yan, J., Zhang, X., and Wang, D.: Seasonal differences in the rice grain yield and nitrogen use efficiency response to seedling establishment methods in the Middle and Lower reaches of the Yangtze River in China, Field Crop. Res., 205, 157–169, 2017. 
Download
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Share
Altmetrics
Final-revised paper
Preprint