Articles | Volume 20, issue 8
https://doi.org/10.5194/bg-20-1635-2023
https://doi.org/10.5194/bg-20-1635-2023
Research article
 | 
26 Apr 2023
Research article |  | 26 Apr 2023

Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China

Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers

Related authors

Using automated machine learning for the upscaling of gross primary productivity
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024,https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Ecosystem characteristics of land covers with various anthropogenic impacts in a tropical forest region of Southeast Asia
Chansopheaktra Sovann, Torbern Tagesson, Patrik Vestin, Sakada Sakhoeun, Soben Kim, Sothea Kok, and Stefan Olin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-98,https://doi.org/10.5194/essd-2024-98, 2024
Revised manuscript not accepted
Short summary
A new temperature–photoperiod coupled phenology module in LPJ-GUESS model v4.1: optimizing estimation of terrestrial carbon and water processes
Shouzhi Chen, Yongshuo H. Fu, Mingwei Li, Zitong Jia, Yishuo Cui, and Jing Tang
Geosci. Model Dev., 17, 2509–2523, https://doi.org/10.5194/gmd-17-2509-2024,https://doi.org/10.5194/gmd-17-2509-2024, 2024
Short summary
LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism
David Martín Belda, Peter Anthoni, David Wårlind, Stefan Olin, Guy Schurgers, Jing Tang, Benjamin Smith, and Almut Arneth
Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-15-6709-2022,https://doi.org/10.5194/gmd-15-6709-2022, 2022
Short summary
Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0)
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022,https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
A 2001–2022 global gross primary productivity dataset using an ensemble model based on the random forest method
Xin Chen, Tiexi Chen, Xiaodong Li, Yuanfang Chai, Shengjie Zhou, Renjie Guo, and Jie Dai
Biogeosciences, 21, 4285–4300, https://doi.org/10.5194/bg-21-4285-2024,https://doi.org/10.5194/bg-21-4285-2024, 2024
Short summary
Future projections of Siberian wildfire and aerosol emissions
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024,https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Mechanisms of soil organic carbon and nitrogen stabilization in mineral-associated organic matter – insights from modeling in phase space
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024,https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary

Cited articles

Batjes, N. H.: Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks, Geoderma, 269, 61–68, https://doi.org/10.1016/j.geoderma.2016.01.034, 2016. 
Cai, S., Zhao, X., Pittelkow, C. M., Fan, M., Zhang, X., and Yan, X.: Optimal nitrogen rate strategy for sustainable rice production in China, Nature, 615, 73–79, 10.1038/s41586-022-05678-x, 2023. 
Chen, F., Hou, L., Liu, M., Zheng, Y., Yin, G., Lin, X., Li, X., Zong, H., Deng, F., and Gao, J.: Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export, J. Geophys. Res.-Biogeo., 121, 451–465, 2016. 
Chen, Q., Huang, M., and Tang, X.: Eutrophication assessment of seasonal urban lakes in China Yangtze River Basin using Landsat 8-derived Forel-Ule index: A six-year (2013–2018) observation, Sci. Total Environ., 745, 135392, https://doi.org/10.1016/j.scitotenv.2019.135392, 2020. 
Chen, S., Ge, Q., Chu, G., Xu, C., Yan, J., Zhang, X., and Wang, D.: Seasonal differences in the rice grain yield and nitrogen use efficiency response to seedling establishment methods in the Middle and Lower reaches of the Yangtze River in China, Field Crop. Res., 205, 157–169, 2017. 
Download
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Altmetrics
Final-revised paper
Preprint