Articles | Volume 20, issue 8
https://doi.org/10.5194/bg-20-1635-2023
https://doi.org/10.5194/bg-20-1635-2023
Research article
 | 
26 Apr 2023
Research article |  | 26 Apr 2023

Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China

Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers

Related authors

Implementing a process-based representation of soil water movement in a second-generation dynamic vegetation model: application to dryland ecosystems (LPJ-GUESS-RE v1.0)
Wim Verbruggen, David Wårlind, Stéphanie Horion, Félicien Meunier, Hans Verbeeck, and Guy Schurgers
EGUsphere, https://doi.org/10.5194/egusphere-2025-1259,https://doi.org/10.5194/egusphere-2025-1259, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Savanna ecosystem structure and productivity along a rainfall gradient: the role of competition and stress tolerance mediated by plant functional traits
Prashant Paudel, Stefan Olin, Mark Tjoelker, Mikael Pontarp, Daniel Metcalfe, and Benjamin Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-3977,https://doi.org/10.5194/egusphere-2024-3977, 2025
Short summary
Characteristics of ecosystems under various anthropogenic impacts in a tropical forest region of Southeast Asia
Chansopheaktra Sovann, Torbern Tagesson, Patrik Vestin, Sakada Sakhoeun, Soben Kim, Sothea Kok, and Stefan Olin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3784,https://doi.org/10.5194/egusphere-2024-3784, 2025
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-223,https://doi.org/10.5194/gmd-2024-223, 2024
Revised manuscript accepted for GMD
Short summary
Using automated machine learning for the upscaling of gross primary productivity
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024,https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Evaluation of long-term carbon dynamics in a drained forested peatland using the ForSAFE-Peat model
Daniel Escobar, Stefano Manzoni, Jeimar Tapasco, Patrik Vestin, and Salim Belyazid
Biogeosciences, 22, 2023–2047, https://doi.org/10.5194/bg-22-2023-2025,https://doi.org/10.5194/bg-22-2023-2025, 2025
Short summary
Technical note: A modified formulation of dynamic energy budget theory for faster computation of biological growth
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025,https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulfur and nitrogen atmospheric deposition
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
Biogeosciences, 22, 535–554, https://doi.org/10.5194/bg-22-535-2025,https://doi.org/10.5194/bg-22-535-2025, 2025
Short summary
Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025,https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024,https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary

Cited articles

Batjes, N. H.: Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks, Geoderma, 269, 61–68, https://doi.org/10.1016/j.geoderma.2016.01.034, 2016. 
Cai, S., Zhao, X., Pittelkow, C. M., Fan, M., Zhang, X., and Yan, X.: Optimal nitrogen rate strategy for sustainable rice production in China, Nature, 615, 73–79, 10.1038/s41586-022-05678-x, 2023. 
Chen, F., Hou, L., Liu, M., Zheng, Y., Yin, G., Lin, X., Li, X., Zong, H., Deng, F., and Gao, J.: Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export, J. Geophys. Res.-Biogeo., 121, 451–465, 2016. 
Chen, Q., Huang, M., and Tang, X.: Eutrophication assessment of seasonal urban lakes in China Yangtze River Basin using Landsat 8-derived Forel-Ule index: A six-year (2013–2018) observation, Sci. Total Environ., 745, 135392, https://doi.org/10.1016/j.scitotenv.2019.135392, 2020. 
Chen, S., Ge, Q., Chu, G., Xu, C., Yan, J., Zhang, X., and Wang, D.: Seasonal differences in the rice grain yield and nitrogen use efficiency response to seedling establishment methods in the Middle and Lower reaches of the Yangtze River in China, Field Crop. Res., 205, 157–169, 2017. 
Download
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Share
Altmetrics
Final-revised paper
Preprint