Articles | Volume 20, issue 9
https://doi.org/10.5194/bg-20-1691-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1691-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diatom responses and geochemical feedbacks to environmental changes at Lake Rauchuagytgyn (Far East Russian Arctic)
Boris K. Biskaborn
CORRESPONDING AUTHOR
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Polar Terrestrial Environmental Systems, Telegrafenberg A45, 14473
Potsdam, Germany
Amy Forster
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Polar Terrestrial Environmental Systems, Telegrafenberg A45, 14473
Potsdam, Germany
Institute for Biochemistry and Biology, University of Potsdam, 14469
Potsdam, Germany
Gregor Pfalz
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Polar Terrestrial Environmental Systems, Telegrafenberg A45, 14473
Potsdam, Germany
Institute of Geosciences, University of Potsdam, 14469 Potsdam,
Germany
Lyudmila A. Pestryakova
Institute of Natural Sciences, North-Eastern Federal University of Yakutsk, 677000 Sakha Republic,
Russia
Kathleen Stoof-Leichsenring
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Polar Terrestrial Environmental Systems, Telegrafenberg A45, 14473
Potsdam, Germany
Jens Strauss
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Permafrost Research, 14473 Potsdam, Germany
Tim Kröger
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Polar Terrestrial Environmental Systems, Telegrafenberg A45, 14473
Potsdam, Germany
Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, 10623 Berlin, Germany
Ulrike Herzschuh
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Polar Terrestrial Environmental Systems, Telegrafenberg A45, 14473
Potsdam, Germany
Institute for Biochemistry and Biology, University of Potsdam, 14469
Potsdam, Germany
Institute of Environmental Science and
Geography, University of Potsdam, 14469 Potsdam, Germany
Related authors
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Andreas Marent, Jens Strauss, Dorothee Wilhelms–Dick, Luidmila A. Pestryakova, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2470, https://doi.org/10.5194/egusphere-2024-2470, 2024
Short summary
Short summary
Globally, lake ecosystems have undergone significant shifts since the 1950s due to human activities. This study offers a unique 220-year sediment record from a remote Siberian boreal lake, revealing the impacts of climate warming and pollution. Multi-proxy analyses, including diatom taxonomy, silicon isotopes, carbon and nitrogen proxies, reveal complex biogeochemical interactions, highlighting the need for further research to mitigate anthropogenic effects on these vital water resources.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Bernhard Diekmann, Werner Stackebrandt, Roland Weiße, Margot Böse, Udo Rothe, Boris Biskaborn, and Achim Brauer
DEUQUA Spec. Pub., 4, 5–17, https://doi.org/10.5194/deuquasp-4-5-2022, https://doi.org/10.5194/deuquasp-4-5-2022, 2022
Gregor Pfalz, Bernhard Diekmann, Johann-Christoph Freytag, Liudmila Syrykh, Dmitry A. Subetto, and Boris K. Biskaborn
Geochronology, 4, 269–295, https://doi.org/10.5194/gchron-4-269-2022, https://doi.org/10.5194/gchron-4-269-2022, 2022
Short summary
Short summary
We use age–depth modeling systems to understand the relationship between age and depth in lake sediment cores. However, depending on which modeling system we use, the model results may vary. We provide a tool to link different modeling systems in an interactive computational environment and make their results comparable. We demonstrate the power of our tool by highlighting three case studies in which we test our application for single-sediment cores and a collection of multiple sediment cores.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Boris K. Biskaborn, Larisa Nazarova, Lyudmila A. Pestryakova, Liudmila Syrykh, Kim Funck, Hanno Meyer, Bernhard Chapligin, Stuart Vyse, Ruslan Gorodnichev, Evgenii Zakharov, Rong Wang, Georg Schwamborn, Hannah L. Bailey, and Bernhard Diekmann
Biogeosciences, 16, 4023–4049, https://doi.org/10.5194/bg-16-4023-2019, https://doi.org/10.5194/bg-16-4023-2019, 2019
Short summary
Short summary
To better understand time-series data in lake sediment cores in times of rapidly changing climate, we study within-lake spatial variabilities of environmental indicator data in 38 sediment surface samples along spatial habitat gradients in the boreal deep Lake Bolshoe Toko (Russia). Our methods comprise physicochemical as well as diatom and chironomid analyses. Species diversities vary according to benthic niches, while abiotic proxies depend on river input, water depth, and catchment lithology.
Liv Heinecke, Steffen Mischke, Karsten Adler, Anja Barth, Boris K. Biskaborn, Birgit Plessen, Ingmar Nitze, Gerhard Kuhn, Ilhomjon Rajabov, and Ulrike Herzschuh
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-34, https://doi.org/10.5194/cp-2016-34, 2016
Revised manuscript not accepted
Short summary
Short summary
The climate history of the Pamir Mountains (Tajikistan) during the last ~29 kyr was investigated using sediments from Lake Karakul as environmental archive. The inferred lake level was highest from the Late Glacial to the early Holocene and lake changes were mainly coupled to climate change. We conclude that the joint influence of Westerlies and Indian Monsoon during the early Holocene caused comparatively moist conditions, while dominating Westerlies yielded dry conditions since 6.7 cal kyr BP.
B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky
Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, https://doi.org/10.5194/essd-7-245-2015, 2015
Short summary
Short summary
This paper introduces the new database of the Global Terrestrial Network for Permafrost (GTN-P) on permafrost temperature and active layer thickness data. It describes the operability of the Data Management System and the data quality. By applying statistics on GTN-P metadata, we analyze the spatial sample representation of permafrost monitoring sites. Comparison with environmental variables and climate projection data enable identification of potential future research locations.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Boehmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-74, https://doi.org/10.5194/cp-2024-74, 2024
Preprint under review for CP
Short summary
Short summary
The strong ecosystem response to the Last Interglacial warming, reflected in the high diversity of proxies, shows the sensitivity of permafrost regions to rising temperatures. In particular, the development of thermokarst landscapes created a mosaic of terrestrial, wetland, and aquatic habitats, fostering an increase in biodiversity. This biodiversity is evident in the rich variety of terrestrial insects, vegetation, and aquatic invertebrates preserved in these deposits.
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2891, https://doi.org/10.5194/egusphere-2024-2891, 2024
Short summary
Short summary
Climate warming in the Arctic is causing the erosion of permafrost coasts and the transformation of permafrost lakes into lagoons. To understand how this affects greenhouse gas (GHG) emissions, we studied carbon dioxide (CO₂) and methane (CH₄) production in lagoons with varying sea connections. Younger lagoons produce more CH₄, while CO₂ increases in more marine conditions. Flooding of permafrost lowlands due to rising sea levels may lead to higher GHG emissions from Arctic coasts in the future.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Andreas Marent, Jens Strauss, Dorothee Wilhelms–Dick, Luidmila A. Pestryakova, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2470, https://doi.org/10.5194/egusphere-2024-2470, 2024
Short summary
Short summary
Globally, lake ecosystems have undergone significant shifts since the 1950s due to human activities. This study offers a unique 220-year sediment record from a remote Siberian boreal lake, revealing the impacts of climate warming and pollution. Multi-proxy analyses, including diatom taxonomy, silicon isotopes, carbon and nitrogen proxies, reveal complex biogeochemical interactions, highlighting the need for further research to mitigate anthropogenic effects on these vital water resources.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862, https://doi.org/10.5194/egusphere-2024-1862, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present a global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21,000 years, which are suitable for the evaluation of Earth System Model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic areas and Tibetan Plateau during the Last Glacial Maximum and early deglaciation, as well as in North Africa and the Mediterranean regions during the Holocene.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Laura Schild, Peter Ewald, Chenzhi Li, Raphaël Hébert, Thomas Laepple, and Ulrike Herzschuh
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-486, https://doi.org/10.5194/essd-2023-486, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study reconstructed past vegetation and forest cover from a global data set of pollen counts from sediment and peat cores. A model was applied to correct for differences in pollen production between different plants and modern remote-sensing forest cover was used to adjust the necessary correction factors and improve the reconstruction even further. Accurate data on past vegetation is invaluable for the investigation of vegetation-climate dynamics and the validation of vegetation models.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-36, https://doi.org/10.5194/essd-2023-36, 2023
Preprint under review for ESSD
Short summary
Short summary
The Lena Delta is the largest river delta in the Arctic, and represents a biodiversity hotspot. Here, we describe multiple field datasets and a detailed habitat classification map for the Lena Delta. We present context and methods of these openly available datasets and show how they can improve our understanding of the rapidly changing Arctic tundra system.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022, https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
Short summary
We present data which were collected on expeditions to the northeast of the Russian Federation. One table describes the 226 locations we visited during those expeditions, and the other describes 40 289 trees which we recorded at these locations. We found out that important information on the forest cannot be predicted precisely from satellites. Thus, for anyone interested in distant forests, it is important to go to there and take measurements or use data (as presented here).
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Bernhard Diekmann, Werner Stackebrandt, Roland Weiße, Margot Böse, Udo Rothe, Boris Biskaborn, and Achim Brauer
DEUQUA Spec. Pub., 4, 5–17, https://doi.org/10.5194/deuquasp-4-5-2022, https://doi.org/10.5194/deuquasp-4-5-2022, 2022
Loeka L. Jongejans, Kai Mangelsdorf, Cornelia Karger, Thomas Opel, Sebastian Wetterich, Jérémy Courtin, Hanno Meyer, Alexander I. Kizyakov, Guido Grosse, Andrei G. Shepelev, Igor I. Syromyatnikov, Alexander N. Fedorov, and Jens Strauss
The Cryosphere, 16, 3601–3617, https://doi.org/10.5194/tc-16-3601-2022, https://doi.org/10.5194/tc-16-3601-2022, 2022
Short summary
Short summary
Large parts of Arctic Siberia are underlain by permafrost. Climate warming leads to permafrost thaw. At the Batagay megaslump, permafrost sediments up to ~ 650 kyr old are exposed. We took sediment samples and analysed the organic matter (e.g. plant remains). We found distinct differences in the biomarker distributions between the glacial and interglacial deposits with generally stronger microbial activity during interglacial periods. Further permafrost thaw enhances greenhouse gas emissions.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395, https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Short summary
Despite rapidly intensifying wildfire seasons in Siberian boreal forests, little is known about long-term relationships between changes in vegetation and shifts in wildfire activity. Using lake sediment proxies, we reconstruct such environmental changes over the past 10,800 years in Central Yakutia. We find that a more open forest may facilitate increased amounts of vegetation burning. The present-day dense larch forest might yet be mediating the current climate-driven wildfire intensification.
Gregor Pfalz, Bernhard Diekmann, Johann-Christoph Freytag, Liudmila Syrykh, Dmitry A. Subetto, and Boris K. Biskaborn
Geochronology, 4, 269–295, https://doi.org/10.5194/gchron-4-269-2022, https://doi.org/10.5194/gchron-4-269-2022, 2022
Short summary
Short summary
We use age–depth modeling systems to understand the relationship between age and depth in lake sediment cores. However, depending on which modeling system we use, the model results may vary. We provide a tool to link different modeling systems in an interactive computational environment and make their results comparable. We demonstrate the power of our tool by highlighting three case studies in which we test our application for single-sediment cores and a collection of multiple sediment cores.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Bruce C. Forbes, Mathias Göckede, Juliane Wolter, Marc Macias-Fauria, Johan Olofsson, Nikita Zimov, and Jens Strauss
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-227, https://doi.org/10.5194/bg-2021-227, 2021
Revised manuscript not accepted
Short summary
Short summary
With global warming, permafrost thaw and associated carbon release are of increasing importance. We examined how large herbivorous animals affect Arctic landscapes and how they might contribute to reduction of these emissions. We show that over a short timespan of roughly 25 years, these animals have already changed the vegetation and landscape. On pastures in a permafrost area in Siberia we found smaller thaw depth and higher carbon content than in surrounding non-pasture areas.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Mareike Wieczorek and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, https://doi.org/10.5194/essd-12-3515-2020, 2020
Short summary
Short summary
Relative pollen productivity (RPP) estimates are used to estimate vegetation cover from pollen records. This study provides (i) a compilation of northern hemispheric RPP studies, allowing researchers to identify suitable sets for their study region and to identify data gaps for future research, and (ii) taxonomically harmonized, unified RPP sets for China, Europe, North America, and the whole Northern Hemisphere, generated from the available studies.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Heike H. Zimmermann, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Juliane Müller, Ruediger Stein, Ralf Tiedemann, and Ulrike Herzschuh
Ocean Sci., 16, 1017–1032, https://doi.org/10.5194/os-16-1017-2020, https://doi.org/10.5194/os-16-1017-2020, 2020
Short summary
Short summary
This study targets high-resolution, diatom-specific sedimentary ancient DNA using a DNA metabarcoding approach. Diatom DNA has been preserved with substantial taxonomic richness in the eastern Fram Strait over the past 30 000 years with taxonomic composition being dominated by cold-water and sea-ice-associated diatoms. Taxonomic reorganisations took place after the Last Glacial Maximum and after the Younger Dryas. Peak proportions of pennate diatoms might indicate past sea-ice presence.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Lutz Schirrmeister, Alexander N. Fedorov, Pavel Y. Konstantinov, Matthias Fuchs, Loeka L. Jongejans, Juliane Wolter, Thomas Opel, and Jens Strauss
Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020, https://doi.org/10.5194/bg-17-3797-2020, 2020
Short summary
Short summary
To extend the knowledge on circumpolar deep permafrost carbon storage, we examined two deep permafrost deposit types (Yedoma and alas) in central Yakutia. We found little but partially undecomposed organic carbon as a result of largely changing sedimentation processes. The carbon stock of the examined Yedoma deposits is about 50 % lower than the general Yedoma domain mean, implying a very hetererogeneous Yedoma composition, while the alas is approximately 80 % below the thermokarst deposit mean.
Lutz Schirrmeister, Elisabeth Dietze, Heidrun Matthes, Guido Grosse, Jens Strauss, Sebastian Laboor, Mathias Ulrich, Frank Kienast, and Sebastian Wetterich
E&G Quaternary Sci. J., 69, 33–53, https://doi.org/10.5194/egqsj-69-33-2020, https://doi.org/10.5194/egqsj-69-33-2020, 2020
Short summary
Short summary
Late Pleistocene Yedoma deposits of Siberia and Alaska are prone to degradation with warming temperatures.
Multimodal grain-size distributions of >700 samples indicate varieties of sediment production, transport, and deposition.
These processes were disentangled using robust endmember modeling analysis.
Nine robust grain-size endmembers characterize these deposits.
The data set was finally classified using cluster analysis.
The polygenetic Yedoma origin is proved.
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Xianyong Cao, Fang Tian, Andrei Andreev, Patricia M. Anderson, Anatoly V. Lozhkin, Elena Bezrukova, Jian Ni, Natalia Rudaya, Astrid Stobbe, Mareike Wieczorek, and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 119–135, https://doi.org/10.5194/essd-12-119-2020, https://doi.org/10.5194/essd-12-119-2020, 2020
Short summary
Short summary
Pollen percentages in spectra cannot be utilized to indicate past plant abundance directly because of the different pollen productivities among plants. In this paper, we applied relative pollen productivity estimates (PPEs) to calibrate plant abundances during the last 40 kyr using pollen counts from 203 pollen spectra in northern Asia. Results indicate the vegetation are generally stable during the Holocene and that climate change is the primary factor.
Boris K. Biskaborn, Larisa Nazarova, Lyudmila A. Pestryakova, Liudmila Syrykh, Kim Funck, Hanno Meyer, Bernhard Chapligin, Stuart Vyse, Ruslan Gorodnichev, Evgenii Zakharov, Rong Wang, Georg Schwamborn, Hannah L. Bailey, and Bernhard Diekmann
Biogeosciences, 16, 4023–4049, https://doi.org/10.5194/bg-16-4023-2019, https://doi.org/10.5194/bg-16-4023-2019, 2019
Short summary
Short summary
To better understand time-series data in lake sediment cores in times of rapidly changing climate, we study within-lake spatial variabilities of environmental indicator data in 38 sediment surface samples along spatial habitat gradients in the boreal deep Lake Bolshoe Toko (Russia). Our methods comprise physicochemical as well as diatom and chironomid analyses. Species diversities vary according to benthic niches, while abiotic proxies depend on river input, water depth, and catchment lithology.
Xianyong Cao, Fang Tian, Furong Li, Marie-José Gaillard, Natalia Rudaya, Qinghai Xu, and Ulrike Herzschuh
Clim. Past, 15, 1503–1536, https://doi.org/10.5194/cp-15-1503-2019, https://doi.org/10.5194/cp-15-1503-2019, 2019
Short summary
Short summary
The high-quality pollen records (collected from lakes and peat bogs) of the last 40 ka cal BP form north Asia are homogenized and the plant abundance signals are calibrated by the modern relative pollen productivity estimates. Calibrated plant abundances for each site are generally consistent with in situ modern vegetation, and vegetation changes within the regions are characterized by minor changes in the abundance of major taxa rather than by invasions of new taxa during the last 40 ka cal BP.
Stefan Kruse, Alexander Gerdes, Nadja J. Kath, Laura S. Epp, Kathleen R. Stoof-Leichsenring, Luidmila A. Pestryakova, and Ulrike Herzschuh
Biogeosciences, 16, 1211–1224, https://doi.org/10.5194/bg-16-1211-2019, https://doi.org/10.5194/bg-16-1211-2019, 2019
Short summary
Short summary
How fast might the arctic treeline in northern central Siberia migrate northwards under current global warming? To answer this, we newly parameterized dispersal processes in the individual-based and spatially explicit model LAVESI-WIND based on parentage analysis. Simulation results show that northernmost open forest stands are migrating at an unexpectedly slow rate into tundra. We conclude that the treeline currently lags behind the strong warming and will remain slow in the upcoming decades.
Stefan Kruse, Alexander Gerdes, Nadja J. Kath, and Ulrike Herzschuh
Geosci. Model Dev., 11, 4451–4467, https://doi.org/10.5194/gmd-11-4451-2018, https://doi.org/10.5194/gmd-11-4451-2018, 2018
Short summary
Short summary
It is of major interest to estimate feedbacks of arctic ecosystems to global warming in the upcoming decades. However, the speed of this response is driven by the potential of species to migrate and the timing and spatial scale for this is rather uncertain. To close this knowledge gap, we updated a very detailed vegetation model by including seed and pollen dispersal driven by wind speed and direction. The new model can substantially help in unveiling the important drivers of migration dynamics.
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018, https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Short summary
Arctic warming mobilizes belowground organic matter in northern high latitudes. This study focused on the size of organic carbon pools and organic matter quality in ice-rich permafrost on the Baldwin Peninsula, West Alaska. We analyzed biogeochemistry and found that three-quarters of the carbon is stored in degraded permafrost deposits. Nonetheless, using biomarker analyses, we showed that the organic matter in undisturbed yedoma permafrost has a higher potential for decomposition.
Matthias Fuchs, Guido Grosse, Jens Strauss, Frank Günther, Mikhail Grigoriev, Georgy M. Maximov, and Gustaf Hugelius
Biogeosciences, 15, 953–971, https://doi.org/10.5194/bg-15-953-2018, https://doi.org/10.5194/bg-15-953-2018, 2018
Short summary
Short summary
Our paper investigates soil organic carbon and nitrogen in permafrost soils on Sobo-Sise Island and Bykovsky Peninsula in the north of eastern Siberia. We collected and analysed permafrost soil cores and upscaled carbon and nitrogen stocks to landscape level. We found large amounts of carbon and nitrogen stored in these frozen soils, reconstructed sedimentation rates and estimated the potential increase in organic carbon availability if permafrost continues to thaw and active layer deepens.
Romy Zibulski, Felix Wesener, Heinz Wilkes, Birgit Plessen, Luidmila A. Pestryakova, and Ulrike Herzschuh
Biogeosciences, 14, 1617–1630, https://doi.org/10.5194/bg-14-1617-2017, https://doi.org/10.5194/bg-14-1617-2017, 2017
Short summary
Short summary
We investigated variations of isotopic and biochemical parameters in arctic mosses. We were able to differentiate habitat groups of mosses (classified by moisture gradient) by elemental content and isotopic ratios (δ13C, δ15N). Some species showed intraspecific variability in their isotopic composition along the moisture gradient. Furthermore n-alkanes showed interesting patterns for species identification.
Lutz Schirrmeister, Georg Schwamborn, Pier Paul Overduin, Jens Strauss, Margret C. Fuchs, Mikhail Grigoriev, Irina Yakshina, Janet Rethemeyer, Elisabeth Dietze, and Sebastian Wetterich
Biogeosciences, 14, 1261–1283, https://doi.org/10.5194/bg-14-1261-2017, https://doi.org/10.5194/bg-14-1261-2017, 2017
Short summary
Short summary
We investigate late Pleistocene permafrost at the Buor Khaya Peninsula (Laptev Sea, Siberia) for cryolithological, geochemical, and geochronological parameters. The sequences were composed of ice-oversaturated silts and fine-grained sands with 0.2 to 24 wt% of organic matter. The deposition was between 54.1 and 9.7 kyr BP. Due to coastal erosion, the biogeochemical signature of the deposits represents the terrestrial end-member, and is related to organic matter deposited in the marine realm.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Heike Hildegard Zimmermann, Elena Raschke, Laura Saskia Epp, Kathleen Rosmarie Stoof-Leichsenring, Georg Schwamborn, Lutz Schirrmeister, Pier Paul Overduin, and Ulrike Herzschuh
Biogeosciences, 14, 575–596, https://doi.org/10.5194/bg-14-575-2017, https://doi.org/10.5194/bg-14-575-2017, 2017
Short summary
Short summary
Organic matter stored in permafrost will start decomposing due to climate warming. To better understand its composition in ice-rich Yedoma, we analyzed ancient sedimentary DNA, pollen and non-pollen palynomorphs throughout an 18.9 m long permafrost core. The combination of both proxies allow an interpretation both of regional floristic changes and of the local environmental conditions at the time of deposition.
Liv Heinecke, Steffen Mischke, Karsten Adler, Anja Barth, Boris K. Biskaborn, Birgit Plessen, Ingmar Nitze, Gerhard Kuhn, Ilhomjon Rajabov, and Ulrike Herzschuh
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-34, https://doi.org/10.5194/cp-2016-34, 2016
Revised manuscript not accepted
Short summary
Short summary
The climate history of the Pamir Mountains (Tajikistan) during the last ~29 kyr was investigated using sediments from Lake Karakul as environmental archive. The inferred lake level was highest from the Late Glacial to the early Holocene and lake changes were mainly coupled to climate change. We conclude that the joint influence of Westerlies and Indian Monsoon during the early Holocene caused comparatively moist conditions, while dominating Westerlies yielded dry conditions since 6.7 cal kyr BP.
Fabian Beermann, Moritz Langer, Sebastian Wetterich, Jens Strauss, Julia Boike, Claudia Fiencke, Lutz Schirrmeister, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-117, https://doi.org/10.5194/bg-2016-117, 2016
Revised manuscript not accepted
Short summary
Short summary
This paper aims to quantify pools of inorganic nitrogen in permafrost soils of arctic Siberia and to estimate annual release rates of this nitrogen due to permafrost thaw. We report for the first time stores of inorganic nitrogen in Siberian permafrost soils. These nitrogen stores are important as permafrost thaw can mobilize substantial amounts of nitrogen, potentially changing the nutrient balance of these soils and representing a significant non-carbon permafrost climate feedback.
B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky
Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, https://doi.org/10.5194/essd-7-245-2015, 2015
Short summary
Short summary
This paper introduces the new database of the Global Terrestrial Network for Permafrost (GTN-P) on permafrost temperature and active layer thickness data. It describes the operability of the Data Management System and the data quality. By applying statistics on GTN-P metadata, we analyze the spatial sample representation of permafrost monitoring sites. Comparison with environmental variables and climate projection data enable identification of potential future research locations.
T. Schneider von Deimling, G. Grosse, J. Strauss, L. Schirrmeister, A. Morgenstern, S. Schaphoff, M. Meinshausen, and J. Boike
Biogeosciences, 12, 3469–3488, https://doi.org/10.5194/bg-12-3469-2015, https://doi.org/10.5194/bg-12-3469-2015, 2015
Short summary
Short summary
We have modelled the carbon release from thawing permafrost soils under various scenarios of future warming. Our results suggests that up to about 140Pg of carbon could be released under strong warming by end of the century. We have shown that abrupt thaw processes under thermokarst lakes can unlock large amounts of perennially frozen carbon stored in deep deposits (which extend many metres into the soil).
M. Fritz, T. Opel, G. Tanski, U. Herzschuh, H. Meyer, A. Eulenburg, and H. Lantuit
The Cryosphere, 9, 737–752, https://doi.org/10.5194/tc-9-737-2015, https://doi.org/10.5194/tc-9-737-2015, 2015
Short summary
Short summary
Ground ice in permafrost has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements that are important for ecosystems and carbon cycling.
Ice wedges in the Arctic Yedoma region hold 45.2 Tg DOC (Tg = 10^12g), 33.6 Tg DIC and a freshwater reservoir of 4200 km³.
Leaching of terrestrial organic matter is the most relevant process of DOC sequestration into ground ice.
J. Strauss, L. Schirrmeister, K. Mangelsdorf, L. Eichhorn, S. Wetterich, and U. Herzschuh
Biogeosciences, 12, 2227–2245, https://doi.org/10.5194/bg-12-2227-2015, https://doi.org/10.5194/bg-12-2227-2015, 2015
Short summary
Short summary
Climatic warming is affecting permafrost, including decomposition of organic matter (OM). However, quantitative data for the quality of OM and its availability for decomposition is limited. We analyzed the quality of OM in late Pleistocene (Yedoma) and Holocene (thermokarst) deposits. A lack of depth trends reveals a constant quality of OM showing that permafrost acts like a freezer, preserving OM quality. This OM will be susceptible to decomposition under climatic warming.
B. Aichner, S. J. Feakins, J. E. Lee, U. Herzschuh, and X. Liu
Clim. Past, 11, 619–633, https://doi.org/10.5194/cp-11-619-2015, https://doi.org/10.5194/cp-11-619-2015, 2015
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
G. Hugelius, J. Strauss, S. Zubrzycki, J. W. Harden, E. A. G. Schuur, C.-L. Ping, L. Schirrmeister, G. Grosse, G. J. Michaelson, C. D. Koven, J. A. O'Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry
Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, https://doi.org/10.5194/bg-11-6573-2014, 2014
Short summary
Short summary
This study provides an updated estimate of organic carbon stored in the northern permafrost region. The study includes estimates for carbon in soils (0 to 3 m depth) and deeper sediments in river deltas and the Yedoma region. We find that field data is still scarce from many regions. Total estimated carbon storage is ~1300 Pg with an uncertainty range of between 1100 and 1500 Pg. Around 800 Pg carbon is perennially frozen, equivalent to all carbon dioxide currently in the Earth's atmosphere.
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014, https://doi.org/10.5194/cp-10-1017-2014, 2014
Y. Wang, U. Herzschuh, L. S. Shumilovskikh, S. Mischke, H. J. B. Birks, J. Wischnewski, J. Böhner, F. Schlütz, F. Lehmkuhl, B. Diekmann, B. Wünnemann, and C. Zhang
Clim. Past, 10, 21–39, https://doi.org/10.5194/cp-10-21-2014, https://doi.org/10.5194/cp-10-21-2014, 2014
G. Hugelius, J. G. Bockheim, P. Camill, B. Elberling, G. Grosse, J. W. Harden, K. Johnson, T. Jorgenson, C. D. Koven, P. Kuhry, G. Michaelson, U. Mishra, J. Palmtag, C.-L. Ping, J. O'Donnell, L. Schirrmeister, E. A. G. Schuur, Y. Sheng, L. C. Smith, J. Strauss, and Z. Yu
Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, https://doi.org/10.5194/essd-5-393-2013, 2013
R. Zibulski, U. Herzschuh, L. A. Pestryakova, J. Wolter, S. Müller, N. Schilling, S. Wetterich, L. Schirrmeister, and F. Tian
Biogeosciences, 10, 5703–5728, https://doi.org/10.5194/bg-10-5703-2013, https://doi.org/10.5194/bg-10-5703-2013, 2013
Related subject area
Paleobiogeoscience: Terrestrial Record
Assessing the impact of forest management and climate on a peatland under Scots pine monoculture using a multidisciplinary approach
The optimum fire window: applying the fire–productivity hypothesis to Jurassic climate states
Late Quaternary palaeoenvironmental evolution and sea level oscillation of Santa Catarina Island (southern Brazil)
The emergence of the tropical rainforest biome in the Cretaceous
Faded landscape: unravelling peat initiation and lateral expansion at one of northwest Europe's largest bog remnants
Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene: combining hydroacoustic profiling and down-core analyses
Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record
The transformation of the forest steppe in the lower Danube Plain of southeastern Europe: 6000 years of vegetation and land use dynamics
Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies
Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe
Stable isotope signatures of Holocene syngenetic permafrost trace seabird presence in the Thule District (NW Greenland)
Preliminary evaluation of the potential of tree-ring cellulose content as a novel supplementary proxy in dendroclimatology
A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): interim results from the SCOPSCO deep drilling project
Yedoma Ice Complex of the Buor Khaya Peninsula (southern Laptev Sea)
Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)
First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania)
Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka
Age–depth model of the past 630 kyr for Lake Ohrid (FYROM/Albania) based on cyclostratigraphic analysis of downhole gamma ray data
Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska
A 22 570-year record of vegetational and climatic change from Wenhai Lake in the Hengduan Mountains biodiversity hotspot, Yunnan, Southwest China
Comment on "Possible source of ancient carbon in phytolith concentrates from harvested grasses" by G. M. Santos et al. (2012)
Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz
Biogeosciences, 21, 5143–5172, https://doi.org/10.5194/bg-21-5143-2024, https://doi.org/10.5194/bg-21-5143-2024, 2024
Short summary
Short summary
The study combines palaeoecological, dendrochronological, remote sensing and historical data to detect the impact of forest management and climate change on peatlands. Due to these changes, the peatland studied in this paper and the pine monoculture surrounding it have become vulnerable to water deficits and various types of disturbance, such as fires and pest infestations. As a result of forest management, there has also been a complete change in the vegetation composition of the peatland.
Teuntje P. Hollaar, Claire M. Belcher, Micha Ruhl, Jean-François Deconinck, and Stephen P. Hesselbo
Biogeosciences, 21, 2795–2809, https://doi.org/10.5194/bg-21-2795-2024, https://doi.org/10.5194/bg-21-2795-2024, 2024
Short summary
Short summary
Fires are limited in year-round wet climates (tropical rainforests; too wet), and in year-round dry climates (deserts; no fuel). This concept, the intermediate-productivity gradient, explains the global pattern of fire activity. Here we test this concept for climate states of the Jurassic (~190 Myr ago). We find that the intermediate-productivity gradient also applies in the Jurassic despite the very different ecosystem assemblages, with fires most frequent at times of high seasonality.
Lidia A. Kuhn, Karin A. F. Zonneveld, Paulo A. Souza, and Rodrigo R. Cancelli
Biogeosciences, 20, 1843–1861, https://doi.org/10.5194/bg-20-1843-2023, https://doi.org/10.5194/bg-20-1843-2023, 2023
Short summary
Short summary
This study investigated changes in coastal ecosystems that reflect environmental changes over the past 6500 years on Brazil's largest oceanic island. This study was motivated by the need to understand the natural evolution of coastal areas to predict future changes. The results highlight the sensitivity of this ecosystem to changes caused by relative sea level variations. As such, it contributes to the debate about potential effects of current climate change induced by global sea level changes.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Matthew L. Trumper, Daniel Griffin, Sarah E. Hobbie, Ian M. Howard, David M. Nelson, Peter B. Reich, and Kendra K. McLauchlan
Biogeosciences, 17, 4509–4522, https://doi.org/10.5194/bg-17-4509-2020, https://doi.org/10.5194/bg-17-4509-2020, 2020
Short summary
Short summary
We developed century-scale records of wood nitrogen isotopes (δ15N) from 16 trees across a long-term savanna fire experiment. Results show similar long-term trajectories in three out of four burn treatments. Lack of evidence to support our hypotheses underscores the complexity of nitrogen dynamics inferred from wood δ15N. This is the first study to our knowledge to investigate multi-decadal effects of fire at different return intervals on wood δ15N, a potential proxy of nitrogen availability.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Sebastian Wetterich, Thomas A. Davidson, Anatoly Bobrov, Thomas Opel, Torben Windirsch, Kasper L. Johansen, Ivan González-Bergonzoni, Anders Mosbech, and Erik Jeppesen
Biogeosciences, 16, 4261–4275, https://doi.org/10.5194/bg-16-4261-2019, https://doi.org/10.5194/bg-16-4261-2019, 2019
Short summary
Short summary
The effects of seabird presence on permafrost peat evolution in NW Greenland were studied by tracing changes in stable C and N isotope composition along the path from bird sources into permafrost peat. The permafrost growth was triggered by organic matter and nutrient input since the neoglacial cooling and concurrent polynya establishment. The study deals with the complex response of biologic and permafrost dynamics to High Arctic climatic and oceanographic conditions of the Late Holocene.
Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 15, 1047–1064, https://doi.org/10.5194/bg-15-1047-2018, https://doi.org/10.5194/bg-15-1047-2018, 2018
Short summary
Short summary
Cellulose content (CC (%)) series from two high-Alpine species, Larix decidua Mill. (European larch, LADE) and Pinus cembra L. (Swiss stone pine, PICE) are investigated in modern wood samples and Holocene wood remains from the Early and mid-Holocene. Trends in modern and Holocene time series as well as climate–cellulose relationships for modern trees in the Alps show high potential for CC (%) to be established as novel supplementary proxy in dendroclimatology.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Lutz Schirrmeister, Georg Schwamborn, Pier Paul Overduin, Jens Strauss, Margret C. Fuchs, Mikhail Grigoriev, Irina Yakshina, Janet Rethemeyer, Elisabeth Dietze, and Sebastian Wetterich
Biogeosciences, 14, 1261–1283, https://doi.org/10.5194/bg-14-1261-2017, https://doi.org/10.5194/bg-14-1261-2017, 2017
Short summary
Short summary
We investigate late Pleistocene permafrost at the Buor Khaya Peninsula (Laptev Sea, Siberia) for cryolithological, geochemical, and geochronological parameters. The sequences were composed of ice-oversaturated silts and fine-grained sands with 0.2 to 24 wt% of organic matter. The deposition was between 54.1 and 9.7 kyr BP. Due to coastal erosion, the biogeochemical signature of the deposits represents the terrestrial end-member, and is related to organic matter deposited in the marine realm.
Heike Hildegard Zimmermann, Elena Raschke, Laura Saskia Epp, Kathleen Rosmarie Stoof-Leichsenring, Georg Schwamborn, Lutz Schirrmeister, Pier Paul Overduin, and Ulrike Herzschuh
Biogeosciences, 14, 575–596, https://doi.org/10.5194/bg-14-575-2017, https://doi.org/10.5194/bg-14-575-2017, 2017
Short summary
Short summary
Organic matter stored in permafrost will start decomposing due to climate warming. To better understand its composition in ice-rich Yedoma, we analyzed ancient sedimentary DNA, pollen and non-pollen palynomorphs throughout an 18.9 m long permafrost core. The combination of both proxies allow an interpretation both of regional floristic changes and of the local environmental conditions at the time of deposition.
Niklas Leicher, Giovanni Zanchetta, Roberto Sulpizio, Biagio Giaccio, Bernd Wagner, Sebastien Nomade, Alexander Francke, and Paola Del Carlo
Biogeosciences, 13, 2151–2178, https://doi.org/10.5194/bg-13-2151-2016, https://doi.org/10.5194/bg-13-2151-2016, 2016
Laura Sadori, Andreas Koutsodendris, Konstantinos Panagiotopoulos, Alessia Masi, Adele Bertini, Nathalie Combourieu-Nebout, Alexander Francke, Katerina Kouli, Sébastien Joannin, Anna Maria Mercuri, Odile Peyron, Paola Torri, Bernd Wagner, Giovanni Zanchetta, Gaia Sinopoli, and Timme H. Donders
Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, https://doi.org/10.5194/bg-13-1423-2016, 2016
Short summary
Short summary
Lake Ohrid (FYROM/Albania) is the deepest, largest and oldest lake in Europe. To understand the climatic and environmental evolution of its area, a palynological study was undertaken for the last 500 ka. We found a correspondence between forested/non-forested periods and glacial-interglacial cycles of marine isotope stratigraphy. Our record shows a progressive change from cooler and wetter to warmer and dryer interglacial conditions. This shift is also visible in glacial vegetation.
H. Baumgarten, T. Wonik, D. C. Tanner, A. Francke, B. Wagner, G. Zanchetta, R. Sulpizio, B. Giaccio, and S. Nomade
Biogeosciences, 12, 7453–7465, https://doi.org/10.5194/bg-12-7453-2015, https://doi.org/10.5194/bg-12-7453-2015, 2015
Short summary
Short summary
Gamma ray (GR) fluctuations and K values from downhole logging data obtained in the sediments of Lake Ohrid correlate with the global climate reference record (LR04 stack from δ18O) (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles and document warm, humid and cold, drier periods. A robust age model for the downhole logging data over the past 630kyr was established and will play a crucial role for other working groups.
M. L. Chipman, V. Hudspith, P. E. Higuera, P. A. Duffy, R. Kelly, W. W. Oswald, and F. S. Hu
Biogeosciences, 12, 4017–4027, https://doi.org/10.5194/bg-12-4017-2015, https://doi.org/10.5194/bg-12-4017-2015, 2015
Short summary
Short summary
Tundra fires may have increased as a result of anthropogenic climate change. To evaluate this hypothesis in the context of natural variability, we reconstructed fire history of the late Quaternary in the Alaskan tundra. Fire-return intervals are spatially variable, ranging from 1648 to 6045 years at our sites. The rarity of historical fires implies that increased fire frequency may greatly alter the structure and function of tundra ecosystems.
Y. F. Yao, X. Y. Song, A. H. Wortley, S. Blackmore, and C. S. Li
Biogeosciences, 12, 1525–1535, https://doi.org/10.5194/bg-12-1525-2015, https://doi.org/10.5194/bg-12-1525-2015, 2015
L. A. Sullivan and J. F. Parr
Biogeosciences, 10, 977–980, https://doi.org/10.5194/bg-10-977-2013, https://doi.org/10.5194/bg-10-977-2013, 2013
G. Brügmann, J. Krause, T. C. Brachert, B. Stoll, U. Weis, O. Kullmer, I. Ssemmanda, and D. F. Mertz
Biogeosciences, 9, 4803–4817, https://doi.org/10.5194/bg-9-4803-2012, https://doi.org/10.5194/bg-9-4803-2012, 2012
Cited articles
Anderson, P. M. and Lozhkin, A. V.: Late Quaternary vegetation of Chukotka
(Northeast Russia), implications for Glacial and Holocene environments of
Beringia, Quaternary Sci. Rev., 107, 112–128, https://doi.org/10.1016/j.quascirev.2014.10.016,
2015.
Andreev, A. A., Morozova, E., Fedorov, G., Schirrmeister, L., Bobrov, A. A.,
Kienast, F., and Schwamborn, G.: Vegetation history of central Chukotka
deduced from permafrost paleoenvironmental records of the El'gygytgyn Impact
Crater, Clim. Past, 8, 1287–1300, https://doi.org/10.5194/cp-8-1287-2012, 2012.
Andreev, A. A., Raschke, E., Biskaborn, B. K., Vyse, S. A., Courtin, J.,
Böhmer, T., Stoof-Leichsenring, K., Kruse, S., Pestryakova, L. A., and
Herzschuh, U.: Late Pleistocene to Holocene vegetation and climate changes
in northwestern Chukotka (Far East Russia) deduced from lakes Ilirney and
Rauchuagytgyn pollen records, Boreas, 50, 652–670,
https://doi.org/10.1111/bor.12521, 2021.
Anthony, K. M. W., Zimov, S. A., Grosse, G., Jones, M. C., Anthony, P. M.,
Iii, F. S. C., Finlay, J. C., Mack, M. C., Davydov, S., Frenzel, P., and
Frolking, S.: A shift of thermokarst lakes from carbon sources to sinks
during the Holocene epoch, Nature, 511, 452–456, https://doi.org/10.1038/nature13560, 2014
Appleby, P. G.: Chronostratigraphic Techniques in Recent Sediments, in:
Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring,
and Chronological Techniques, edited by: Last, W. M. and Smol, J. P.,
Springer Netherlands, Dordrecht, 171–203,
https://doi.org/10.1007/0-306-47669-X_9, 2001.
Appleby, P. G., Nolan, P. J., Gifford, D. W., Godfrey, M. J., Oldfield, F.,
Anderson, N. J., and Battarbee, R. W.: 210Pb dating by low background gamma
counting, Hydrobiologia, 143, 21–27, https://doi.org/10.1007/BF00026640, 1986.
Appleby, P. G., Richardson, N., and Nolan, P. J.: Self-absorption
corrections for well-type germanium detectors, Nucl. Instrum. Method. Phys.
Res. Sect. B, 71, 228–233, https://doi.org/10.1016/0168-583X(92)95328-O, 1992.
Aquino-López, M. A., Blaauw, M., Christen, J. A., and Sanderson, N. K.:
Bayesian Analysis of 210Pb Dating, J. Agr. Biol.
Environ. Stat., 23, 317–333, https://doi.org/10.1007/s13253-018-0328-7, 2018.
Bahls, L. L.: The role of amateurs in modern diatom research, Diatom Res.,
30, 209–210, https://doi.org/10.1080/0269249X.2014.988293, 2015.
Baird, M. E. and Middleton, J. H.: On relating physical limits to the
carbon: nitrogen ratio of unicellular algae and benthic plants, J. Mar.
Syst., 49, 169–175, https://doi.org/10.1016/j.jmarsys.2003.10.007, 2004.
Barinova, S., Nevo, E., and Bragina, T.: Ecological assessment of wetland
ecosystems of northern Kazakhstan on the basis of hydrochemistry and algal
biodiversity, Acta Bot. Croat., 70, 215–244, https://doi.org/10.2478/v10184-010-0020-7,
2011.
Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H.,
Carvalho, L., and Juggins, S.: Diatoms, in: Tracking Environmental Change
Using Lake Sediments, Vol. 3, Terrestrial, Algal, and Siliceous Indicators,
edited by: Smol, J. P., Birks, H. J. B., and Last, W. M., Kluwer Academic
Publishers, Dordrecht, the Netherlands, 155–202, ISBN 978-0-306-47668-6, 2001.
Birks, H. J. B.: Numerical methods for the analysis of diatom assemblage
data, in: The Diatoms: Applications for the Environmental and Earth Science,
edited by: Smol, J. P. and Stoermer, E. F., Cambridge University Press,
Cambridge, 23–54, https://doi.org/10.1017/CBO9780511763175, 2010.
Biskaborn, B., Herzschuh, U., Bolshiyanov, D., Savelieva, L., Zibulski, R.,
and Diekmann, B.: Late Holocene thermokarst variability inferred from
diatoms in a lake sediment record from the Lena Delta, Siberian Arctic, J.
Paleolimnol., 49, 155–170, https://doi.org/10.1007/s10933-012-9650-1, 2013.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., and
Diekmann, B.: Environmental variability in northeastern Siberia during the
last similar to 13,300 yr inferred from lake diatoms and
sediment-geochemical parameters, Palaeogeogr. Palaeocl.,
329, 22–36, https://doi.org/10.1016/j.palaeo.2012.02.003, 2012.
Biskaborn, B. K., Subetto, D. A., Savelieva, L. A., Vakhrameeva, P. S.,
Hansche, A., Herzschuh, U., Klemm, J., Heinecke, L., Pestryakova, L. A.,
Meyer, H., Kuhn, G., and Diekmann, B.: Late Quaternary vegetation and lake
system dynamics in north-eastern Siberia: Implications for seasonal climate
variability, Quaternary Sci. Rev., 147, 406–421, https://doi.org/10.1016/j.quascirev.2015.08.014,
2016.
Biskaborn, B. K., Narancic, B., Stoof-Leichsenring, K. R., Pestryakova, L.
A., Appleby, P. G., Piliposian, G. T., and Diekmann, B.: Effects of climate
change and industrialization on Lake Bolshoe Toko, eastern Siberia, J.
Paleolimnol., 65, 335–352, https://doi.org/10.1007/s10933-021-00175-z, 2021a.
Biskaborn, B. K., Nazarova, L., Kröger, T., Pestryakova, L. A., Syrykh,
L., Pfalz, G., Herzschuh, U., and Diekmann, B.: Late Quaternary Climate
Reconstruction and Lead-Lag Relationships of Biotic and Sediment-Geochemical
Indicators at Lake Bolshoe Toko, Siberia, Front. Earth Sci., 9, 737353,
https://doi.org/10.3389/feart.2021.737353, 2021b.
Biskaborn, B. K., Forster, A., and Pfalz, G.: Diatom species from sediment core EN18218, Lake Rauchuagytgyn, expedition to Chukotka 2018, Russian Arctic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953126, 2023a.
Biskaborn, B. K., Forster, A., and Pfalz, G.: Nitrogen from sediment core EN18218, Lake Rauchuagytgyn, expedition to Chukotka 2018, Russian Arctic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953129, 2023b.
Biskaborn, B. K., Forster, A., and Pfalz, G.: Mercury from sediment core EN18218, Lake Rauchuagytgyn, expedition to Chukotka 2018, Russian Arctic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953130, 2023c.
Biskaborn, B. K., Forster, A., and Pfalz, G.: Accumulation rates from sediment core EN18218, Lake Rauchuagytgyn, expedition to Chukotka 2018, Russian Arctic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953132, 2023d.
Biskaborn, B. K., Forster, A., Pfalz, G., and Stoof-Leichsenring, K. R.: Geochemistry data from sediment core 16-KP-04-L19B, Lake Rauchuagytgyn, expedition to Chukotka 2016, Russian Arctic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953134, 2023e.
Biskaborn, B. K., Forster, A., Pfalz, G., and Stoof-Leichsenring, K. R.: Diatom species from sediment core 16-KP-04-L19B, Lake Rauchuagytgyn, expedition to Chukotka 2016, Russian Arctic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953138, 2023f.
Biskaborn, B. K., Forster, A., Pfalz, G., and Stoof-Leichsenring, K. R.: 210Pb and 137Cs dating data from sediment core 16-KP-04-L19B, Lake Rauchuagytgyn, expedition to Chukotka 2016, Russian Arctic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953139, 2023g.
Biskaborn, B. K., Forster, A., Pfalz, G., and Stoof-Leichsenring, K. R.: Accumulation rates from sediment core 16-KP-04-L19B, Lake Rauchuagytgyn, expedition to Chukotka 2016, Russian Arctic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953142, 2023h.
Blaauw, M., Christen, J., and Aquino-Lopez, M.: rplum: Bayesian Age-Depth
Modelling of Cores Dated by Pb-210, R package version 0.2.2, https://cran.r-project.org/web/packages/rplum/rplum.pdf (last access: 28 April 2023), 2021.
Braaten, H. F. V., de Wit, H. A., Larssen, T., and Poste, A. E.: Mercury in
fish from Norwegian lakes: The complex influence of aqueous organic carbon,
Sci. Total Environ., 627, 341–348, https://doi.org/10.1016/j.scitotenv.2018.01.252, 2018.
Brenner, M. and Escobar, J.: Ontogeny of Aquatic Ecosystems, in:
Encyclopedia of Inland Waters, edited by: Likens, G. E., Academic Press,
Oxford, 456–461, https://doi.org/10.1016/B978-012370626-3.00205-2, 2009.
Buczkó, K., Magyari, E. K., Braun, M., and Bálint, M.:
Diatom-inferred lateglacial and Holocene climatic variability in the South
Carpathian Mountains (Romania), Quaternary Int., 293, 123–135, https://doi.org/10.1016/j.quaint.2012.04.042, 2013.
Cherapanova, M., Snyder, J., and Brigham-Grette, J.: Diatom stratigraphy of
the last 250 ka at Lake El'gygytgyn, northeast Siberia, J. Paleolimnol., 37,
155–162, https://doi.org/10.1007/s10933-006-9019-4, 2007.
Courtin, J., Andreev, A. A., Raschke, E., Bala, S., Biskaborn, B. K., Liu,
S., Zimmermann, H., Diekmann, B., Stoof-Leichsenring, K. R., Pestryakova, L.
A., and Herzschuh, U.: Vegetation Changes in Southeastern Siberia During the
Late Pleistocene and the Holocene, Front. Ecol. Evol., 9, 625096,
https://doi.org/10.3389/fevo.2021.625096, 2021.
Cremer, H. and Van de Vijver, B.: On Pliocaenicus costatus
(Bacillariophyceae) in Lake El'gygytgyn, East Siberian, Eur. J. Phycol., 41,
169–178, https://doi.org/10.1080/09670260600621932, 2006.
Douglas, M. S. V. and Smol, J. P.: Freshwater Diatoms as Indicators of
Environmental Change in the High Arctic, in: The Diatoms: Application for
the Environmental and Earth Sciences, edited by: Smol, J. P. and Stoermer,
E. F., Cambridge University Press, Cambridge, 249–266, https://doi.org/10.1017/CBO9780511763175, 2010.
Elias, S. and Brigham-Grette, J.: Late Pleistocene glacial events in
Beringia, Encycl. Quat. Sci., 2, 191–201, 2013.
Engstrom, D. R., Fritz, S. C., Almendinger, J. E., and Juggins, S.: Chemical
and biological trends during lake evolution in recently deglaciated terrain,
Nature, 408, 161–166, 2000.
ESRI and GeoEye: CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, the
GIS User Community, Imagery [basemap], Scale Not Given, World Imagery,
2019.
Gibson, C. E., Anderson, N. J., and Haworth, E. Y.: Aulacoseira subarctica: taxonomy, physiology,
ecology and palaeoecology, Eur. J. Phycol., 38, 83–101,
https://doi.org/10.1080/0967026031000094102, 2003.
Glushkova, O. Y.: Chapter 63 – Late Pleistocene Glaciations in North-East
Asia, in: Developments in Quaternary Sciences, edited by: Ehlers, J.,
Gibbard, P. L., and Hughes, P. D., Elsevier, 865–875, https://doi.org/10.1016/B978-0-444-53447-7.00063-5, 2011.
Grimm, E. C.: Coniss – a Fortran-77 Program for Stratigraphically
Constrained Cluster-Analysis by the Method of Incremental Sum of Squares,
Comput. Geosci., 13, 13–35, 1987.
Hernández-Almeida, I., Grosjean, M., Przybylak, R., and Tylmann, W.: A
chrysophyte-based quantitative reconstruction of winter severity from varved
lake sediments in NE Poland during the past millennium and its relationship
to natural climate variability, Quaternary Sci. Rev., 122, 74–88, https://doi.org/10.1016/j.quascirev.2015.05.029, 2015.
Herzschuh, U., Pestryakova, L. A., Savelieva, L. A., Heinecke, L.,
Böhmer, T., Biskaborn, B., Andreev, A., Ramisch, A., Shinneman, A. L.
C., and Birks, H. J. B.: Siberian larch forests and the ion content of
thaw lakes form a geochemically functional entity, Nat. Commun., 4, 2408, https://doi.org/10.1038/ncomms3408, 2013.
Heudre, D., Wetzel, E. C., Lange-Bertalot, H., Van de Vijver, B., Moreau,
L., and Ector, L.: A review of Tabellaria species from freshwater
environments in Europe, Fottea, 21, 180–205, https://doi.org/10.5507/fot.2021.005, 2021.
Hill, M. O.: Diversity and evenness: a unifying notation and its consequences, Ecology, 54, 427–432, 1973.
Hoff, U., Biskaborn, B. K., Dirksen, V. G., Dirksen, O., Kuhn, G., Meyer,
H., Nazarova, L., Roth, A., and Diekmann, B.: Holocene environment of
Central Kamchatka, Russia: Implications from a multi-proxy record of
Two-Yurts Lake, Glob. Planet. Change, 134, 101–117,
https://doi.org/10.1016/j.gloplacha.2015.07.011, 2015.
Hofmann, G., Lange-Bertalot, H., and Werum, M., Lange-Bertalot, H. (Eds.):
Diatomeen im Süßwasser – Benthos von Mitteleuropa, Ganter Verlag,
908 pp., ISBN 978-3-906166-92-6, 2011.
Horn, H., Paul, L., Horn, W., and Petzoldt, T.: Long-term trends in the
diatom composition of the spring bloom of a German reservoir: is Aulacoseira
subarctica favoured by warm winters?, Freshwater Biol., 56, 2483–2499,
https://doi.org/10.1111/j.1365-2427.2011.02674.x, 2011.
Hu, Z., Yang, X., Anderson, N. J., and Li, Y.: The Landscape–Atmosphere
Continuum Determines Ecological Change in Alpine Lakes of SE Tibet,
Ecosystems, 21, 839–851, https://doi.org/10.1007/s10021-017-0187-z, 2018.
Huang, S., Zhang, K., Lin, Q., Liu, J., and Shen, J.: Abrupt ecological
shifts of lakes during the Anthropocene, Earth-Sci. Rev., 227, 103981,
https://doi.org/10.1016/j.earscirev.2022.103981, 2022.
Huang, S., Herzschuh, U., Pestryakova, L. A., Zimmermann, H. H., Davydova,
P., Biskaborn, B. K., Shevtsova, I., and Stoof-Leichsenring, K. R.: Genetic
and morphologic determination of diatom community composition in surface
sediments from glacial and thermokarst lakes in the Siberian Arctic, J.
Paleolimnol., 64, 225–242, https://doi.org/10.1007/s10933-020-00133-1, 2020.
Hughes-Allen, L., Bouchard, F., Hatté, C., Meyer, H., Pestryakova, L.
A., Diekmann, B., Subetto, D. A., and Biskaborn, B. K.: 14,000-year Carbon
Accumulation Dynamics in a Siberian Lake Reveal Catchment and Lake
Productivity Changes, Front. Earth Sci., 9, 710257,
https://doi.org/10.3389/feart.2021.710257, 2021.
Hunter, H. N., Gowing, C. J. B., Marriott, A. L., Lacey, J. H., Dowell, S.,
and Watts, M. J.: Developments in Pb-210 methodologies to provide
chronologies for environmental change, Environ. Geochem. Health, 45, 1173–1181,
https://doi.org/10.1007/s10653-022-01215-x, 2022.
IPCC: Global Warming of 1.5 ∘C – Climate Change 2021: The Physical Science
Basis, Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, UK, https://doi.org/10.1017/9781009157896, 2021.
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J.
T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall,
M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K.,
Geirsdottir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M. N.,
Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W. W.,
Otto-Bliesner, B. L., Porinchu, D. F., Ruhland, K., Smol, J. P., Steig, E.
J., and Wolfe, B. B.: Holocene thermal maximum in the western Arctic (0–180∘ W), Quaternary Sci. Rev., 23, 529–560, https://doi.org/10.1016/j.quascirev.2003.09.007,
2004.
Kincaid, D. W., Adair, E. C., Joung, D., Stockwell, J. D., and Schroth, A.
W.: Ice cover and thaw events influence nitrogen partitioning and
concentration in two shallow eutrophic lakes, Biogeochemistry, 157, 15–29,
https://doi.org/10.1007/s10533-021-00872-x, 2022.
Kokorowski, H. D., Anderson, P. M., Mock, C. J., and Lozhkin, A. V.: A
re-evaluation and spatial analysis of evidence for a Younger Dryas climatic
reversal in Beringia, Quaternary Sci. Rev., 27, 1710–1722,
https://doi.org/10.1016/j.quascirev.2008.06.010, 2008.
Korosi, J. B., Griffiths, K., Smol, J. P., and Blais, J. M.: Trends in
historical mercury deposition inferred from lake sediment cores across a
climate gradient in the Canadian High Arctic, Environ. Pollut., 241,
459–467, https://doi.org/10.1016/j.envpol.2018.05.049, 2018.
Kostrova, S. S., Biskaborn, B. K., Pestryakova, L. A., Fernandoy, F., Lenz,
M. M., and Meyer, H.: Climate and environmental changes of the Lateglacial
transition and Holocene in northeastern Siberia: Evidence from diatom oxygen
isotopes and assemblage composition at Lake Emanda, Quaternary Sci. Rev., 259,
106905, https://doi.org/10.1016/j.quascirev.2021.106905, 2021.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae Band 2/2,
Süßwasserflora von Mitteleuropa, 2, Gustav Fischer Verlag,
Stuttgart, ISBN 978-3-8274-1912-5, 1986–1991.
Laing, T. E. and Smol, J. P.: Late Holocene environmental changes inferred
from diatoms in a lake on the western Taimyr Peninsula, northern Russia, J.
Paleolimnol., 30, 231–247, https://doi.org/10.1023/a:1025561905506, 2003.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Mackay, A. W., Felde, V. A., Morley, D. W., Piotrowska, N., Rioual, P.,
Seddon, A. W. R., and Swann, G. E. A.: Long-term trends in diatom diversity
and palaeoproductivity: a 16 000-year multidecadal record from
Lake Baikal, southern Siberia, Clim. Past, 18, 363–380,
https://doi.org/10.5194/cp-18-363-2022, 2022.
Marzetz, V., Koussoroplis, A.-M., Martin-Creuzburg, D., Striebel, M., and
Wacker, A.: Linking primary producer diversity and food quality effects on
herbivores: A biochemical perspective, Sci. Rep., 7, 11035,
https://doi.org/10.1038/s41598-017-11183-3, 2017.
McKay, N. P., Kaufman, D. S., Routson, C. C., Erb, M. P., and Zander, P. D.:
The Onset and Rate of Holocene Neoglacial Cooling in the Arctic, Geophys.
Res. Lett., 45, 12487–12496, https://doi.org/10.1029/2018GL079773, 2018.
Melles, M., Brigham-Grette, J., Glushkova, O. Y., Minyuk, P. S., Nowaczyk,
N. R., and Hubberten, H. W.: Sedimentary geochemistry of core PG1351 from
Lake El'gygytgyn – a sensitive record of climate variability in the East
Siberian Arctic during the past three glacial-interglacial cycles, J.
Paleolimnol., 37, 89–104, https://doi.org/10.1007/s10933-006-9025-6, 2007.
Mendonça, R., Müller, R. A., Clow, D., Verpoorter, C., Raymond, P.,
Tranvik, L. J., and Sobek, S.: Organic carbon burial in global lakes and
reservoirs, Nat. Commun., 8, 1694, https://doi.org/10.1038/s41467-017-01789-6, 2017.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An overview of the Global Historical Climatology Network-Daily Database, J. Atmos. Ocean. Tech., 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.
Meyer, H., Opel, T., Laepple, T., Dereviagin, A. Y., Hoffmann, K., and
Werner, M.: Long-term winter warming trend in the Siberian Arctic during the
mid- to late Holocene, Nat. Geosci., 8, 122–125, https://doi.org/10.1038/ngeo2349,
2015.
Meyer, H., Kostrova, S. S., Meister, P., Lenz, M. M., Kuhn, G., Nazarova,
L., Syrykh, L. S., and Dvornikov, Y.: Lacustrine diatom oxygen isotopes as
palaeo precipitation proxy - Holocene environmental and snowmelt variations
recorded at Lake Bolshoye Shchuchye, Polar Urals, Russia, Quaternary Sci. Rev.,
290, 107620, https://doi.org/10.1016/j.quascirev.2022.107620,
2022.
Meyers, P. A. and Teranes, J. L.: Sediment organic matter, in: Tracking
Environmental Change using Lake Sediments, Vol. 2: Physical and
Geochemical Methods, edited by: Last, W. M. and Smol, J. P., Kluwer
Academic Publisher, Dordrecht, 239–269, ISBN 978-0-306-47670-9, 2002.
Nazarova, L. B., Frolova, L. A., Palagushkina, O. V., Rudaya, N. A., Syrykh,
L. S., Grekov, I. M., Solovieva, N., and Loskutova, O. A.: Recent shift in
biological communities: A case study from the Eastern European Russian
Arctic (Bol`shezemelskaya Tundra), Polar Biol., 44, 1107–1125,
https://doi.org/10.1007/s00300-021-02876-7, 2021.
Neil, K. and Lacourse, T.: Diatom responses to long-term climate and
sea-level rise at a low-elevation lake in coastal British Columbia, Canada,
Ecosphere, 10, e02868, https://doi.org/10.1002/ecs2.2868, 2019.
Nolan, M., Liston, G., Prokein, P., Brigham-Grette, J., Sharpton, V. L., and
Huntzinger, R.: Analysis of lake ice dynamics and morphology on Lake
El'gygytgyn, NE Siberia, using synthetic aperture radar (SAR) and Landsat,
J. Geophys. Res.-Atmos., 107, ALT 3-1–ALT 3-12,
https://doi.org/10.1029/2001JD000934, 2002.
Obase, T. and Abe-Ouchi, A.: Abrupt Bølling-Allerød Warming Simulated
under Gradual Forcing of the Last Deglaciation, Geophys. Res. Lett., 46,
11397–11405, https://doi.org/10.1029/2019GL084675, 2019.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R., Simpson, G., Solymos, P., Stevens,
M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology Package, R
package version 2.5-7, https://cran.r-project.org/web/packages/vegan/index.html (last access: 28 April 2023), 2020.
Olson, C. L., Jiskra, M., Sonke, J. E., and Obrist, D.: Mercury in tundra
vegetation of Alaska: Spatial and temporal dynamics and stable isotope
patterns, Sci. Tot. Environ., 660, 1502–1512, https://doi.org/10.1016/j.scitotenv.2019.01.058, 2019.
Pahl-Wostl, C.: Self-Regulation of Limnetic Ecosystems, in: The Lakes
Handbook, edited by: O'Sullivan, P. E. and Reynolds, C. S., 583–608, https://doi.org/10.1002/9780470999271.ch17, Blackwell Science Ltd,
2003.
Palagushkina, O., Wetterich, S., Biskaborn, B. K., Nazarova, L.,
Schirrmeister, L., Lenz, J., Schwamborn, G., and Grosse, G.: Diatom records
and tephra mineralogy in pingo deposits of Seward Peninsula, Alaska,
Palaeogeogr. Palaeocl., 479, 1–15, 2017.
Palagushkina, O. V., Nazarova, L. B., Wetterich, S., and Schirrmeister, L.:
Diatoms of modern bottom sediments in Siberian arctic, Contem. Problem.
Ecol., 5, 413–422, https://doi.org/10.1134/s1995425512040105, 2012.
Paull, T. M., Finkelstein, S. A., and Gajewski, K.: Interactions between
climate and landscape drive Holocene ecological change in a High Arctic lake
on Somerset Island, Nunavut, Canada, Arctic Sci., 3, 17–38,
https://doi.org/10.1139/as-2016-0013, 2017.
Pestryakova, L. A., Herzschuh, U., Gorodnichev, R., and Wetterich, S.: The
sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to
electrical conductivity and other environmental variables, Polar Res., 37,
https://doi.org/10.1080/17518369.2018.1485625, 2018.
Pfalz, G., Diekmann, B., Freytag, J.-C., Syrykh, L., Subetto, D. A., and Biskaborn, B. K.: Improving age–depth relationships by using the LANDO (“Linked age and depth modeling”) model ensemble, Geochronology, 4, 269–295, https://doi.org/10.5194/gchron-4-269-2022, 2022.
R Core Team: R: A language and environment for statistical computing, https://www.R-project.org/ (last access: 28 April 2023), 2016.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon
Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Renssen, H., Seppä, H., Crosta, X., Goosse, H., and Roche, D. M.: Global
characterization of the Holocene Thermal Maximum, Quaternary Sci. Rev., 48, 7–19,
https://doi.org/10.1016/j.quascirev.2012.05.022, 2012.
Rouillard, A., Michelutti, N., Rosén, P., Douglas, M. S. V., and Smol,
J. P.: Using paleolimnology to track Holocene climate fluctuations and
aquatic ontogeny in poorly buffered High Arctic lakes, Palaeogeogr.,
Palaeocl., 321/322, 1–15, https://doi.org/10.1016/j.palaeo.2012.01.011,
2012.
Rühland, K., Paterson, A. M., and Smol, J. P.: Hemispheric-scale
patterns of climate-related shifts in planktonic diatoms from North American
and European lakes, Glob. Change Biol., 14, 2740–2754,
https://doi.org/10.1111/j.1365-2486.2008.01670.x, 2008.
Rühland, K. M., Paterson, A. M., and Smol, J. P.: Lake diatom responses
to warming: reviewing the evidence, J. Paleolimnol., 54, 1–35, https://doi.org/10.1007/s10933-015-9837-3, 2015.
Rutkowski, C., Lenz, J., Lang, A., Wolter, J., Mothes, S., Reemtsma, T.,
Grosse, G., Ulrich, M., Fuchs, M., Schirrmeister, L., Fedorov, A.,
Grigoriev, M., Lantuit, H., and Strauss, J.: Mercury in Sediment Core
Samples From Deep Siberian Ice-Rich Permafrost, Front. Earth Sci.,
9, 718153, https://doi.org/10.3389/feart.2021.718153, 2021.
Ryves, D., Juggins, S., Fritz, S., and Battarbee, R.: Experimental diatom
dissolution and the quantification of microfossil preservation in sediments,
Palaeogeogr. Palaeocl., 172, 99–113, 2001.
Sadler, P. M.: Sediment Accumulation Rates and the Completeness of
Stratigraphic Sections, J. Geol., 89, 569–584, https://doi.org/10.1086/628623,
1981.
Scussolini, P., Vegas-Vilarrúbia, T., Rull, V., Corella, J. P.,
Valero-Garcés, B., and Goma, J.: Middle and late Holocene climate change
and human impact inferred from diatoms, algae and aquatic macrophyte pollen
in sediments from Lake Montcortès (NE Iberian Peninsula), J.
Paleolimnol., 46, 369–385, 2011.
Shevtsova, I., Heim, B., Kruse, S., Schröder, J., Troeva, E. I.,
Pestryakova, L. A., Zakharov, E. S., and Herzschuh, U.: Strong shrub
expansion in tundra-taiga, tree infilling in taiga and stable tundra in
central Chukotka (north-eastern Siberia) between 2000 and 2017,
Environ. Res. Lett., 15, 085006, https://doi.org/10.1088/1748-9326/ab9059, 2020.
Smol, J. P. and Stoermer, E. F.: The Diatoms: Applications for the
Environmental and Earth Sciences, 2, Cambridge University, 667 pp., ISBN : 978-1-107-56496-1, 2010.
Smol, J. P., Wolfe, A. P., Birks, H. J. B., Douglas, M. S. V., Jones, V. J.,
Korhola, A., Pienitz, R., Rühland, K., Sorvari, S., Antoniades, D.,
Brooks, S. J., Fallu, M. A., Hughes, M., Keatley, B. E., Laing, T. E.,
Michelutti, N., Nazarova, L., Nyman, M., Paterson, A. M., Perren, B.,
Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitoneni, S., Solovieva, N.,
and Weckstrom, J.: Climate-driven regime shifts in the biological
communities of arctic lakes, P. Natl. Acad. Sci. USA, 102, 4397–4402,
https://doi.org/10.1073/pnas.0500245102, 2005.
Sobek, S., Durisch-Kaiser, E., Zurbrügg, R., Wongfun, N., Wessels, M.,
Pasche, N., and Wehrli, B.: Organic carbon burial efficiency in lake
sediments controlled by oxygen exposure time and sediment source, Limnol.
Oceanogr., 54, 2243–2254, https://doi.org/10.4319/lo.2009.54.6.2243, 2009.
Spangenberg, I., Overduin, P. P., Damm, E., Bussmann, I., Meyer, H.,
Liebner, S., Angelopoulos, M., Biskaborn, B. K., Grigoriev, M. N., and
Grosse, G.: Methane pathways in winter ice of a thermokarst
lake–lagoon–coastal water transect in north Siberia, The Cryosphere, 15,
1607–1625, https://doi.org/10.5194/tc-15-1607-2021, 2021.
Subetto, D. A., Nazarova, L. B., Pestryakova, L. A., Syrykh, L. S.,
Andronikov, A. V., Biskaborn, B., Diekmann, B., Kuznetsov, D. D., Sapelko,
T. V., and Grekov, I. M.: Paleolimnological studies in Russian northern
Eurasia: A review, Contemp. Probl. Ecol., 10, 327–335,
https://doi.org/10.1134/s1995425517040102, 2017.
Sundqvist, H. S., Kaufman, D. S., McKay, N. P., Balascio, N. L., Briner, J.
P., Cwynar, L. C., Sejrup, H. P., Seppa, H., Subetto, D. A., Andrews, J. T.,
Axford, Y., Bakke, J., Birks, H. J. B., Brooks, S. J., de Vernal, A.,
Jennings, A. E., Ljungqvist, F. C., Ruehland, K. M., Saenger, C., Smol, J.
P., and Viau, A. E.: Arctic Holocene proxy climate database – new approaches
to assessing geochronological accuracy and encoding climate variables,
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, 2014.
Swann, G. E. A., Leng, M. J., Juschus, O., Melles, M., Brigham-Grette, J.,
and Sloane, H. J.: A combined oxygen and silicon diatom isotope record of
Late Quaternary change in Lake El'gygytgyn, North East Siberia, Quaternary Sci. Rev., 29, 774–786, https://doi.org/10.1016/j.quascirev.2009.11.024, 2010.
Syvitski, J., Waters, C. N., Day, J., Milliman, J. D., Summerhayes, C.,
Steffen, W., Zalasiewicz, J., Cearreta, A., Gałuszka, A., Hajdas, I.,
Head, M. J., Leinfelder, R., McNeill, J. R., Poirier, C., Rose, N. L.,
Shotyk, W., Wagreich, M., and Williams, M.: Extraordinary human energy
consumption and resultant geological impacts beginning around 1950 CE
initiated the proposed Anthropocene Epoch, Commun. Earth
Environ., 1, 32, https://doi.org/10.1038/s43247-020-00029-y, 2020.
Tan, Z., Zhuang, Q., Shurpali, N. J., Marushchak, M. E., Biasi, C., Eugster,
W., and Walter Anthony, K.: Modeling CO2 emissions from Arctic lakes: Model
development and site-level study, J. Adv. Model. Earth
Syst., 9, 2190–2213, https://doi.org/10.1002/2017MS001028,
2017.
Toming, K., Kotta, J., Uuemaa, E., Sobek, S., Kutser, T., and Tranvik, L.
J.: Predicting lake dissolved organic carbon at a global scale, Sci.
Rep., 10, 8471, https://doi.org/10.1038/s41598-020-65010-3, 2020.
Valiranta, M., Weckstrom, J., Siitonen, S., Seppa, H., Alkio, J., Juutinen,
S., and Tuittila, E. S.: Holocene aquatic ecosystem change in the boreal
vegetation zone of northern Finland, J. Paleolimnol., 45, 339–352,
https://doi.org/10.1007/s10933-011-9501-5, 2011.
Vihma, T., Screen, J., Tjernström, M., Newton, B., Zhang, X., Popova,
V., Deser, C., Holland, M., and Prowse, T.: The atmospheric role in the
Arctic water cycle: A review on processes, past and future changes, and
their impacts, J. Geophys. Res.-Biogeo., 121,
586–620, https://doi.org/10.1002/2015JG003132, 2016.
Vyse, S. A., Herzschuh, U., Andreev, A. A., Pestryakova, L. A., Diekmann,
B., Armitage, S. J., and Biskaborn, B. K.: Geochemical and sedimentological
responses of arctic glacial Lake Ilirney, chukotka (far east Russia) to
palaeoenvironmental change since ∼ 51.8 ka BP, Quaternary Sci. Rev., 247, 106607, https://doi.org/10.1016/j.quascirev.2020.106607, 2020.
Vyse, S. A., Herzschuh, U., Pfalz, G., Pestryakova, L. A., Diekmann, B.,
Nowaczyk, N., and Biskaborn, B. K.: Sediment and carbon accumulation in a
glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and
Holocene: combining hydroacoustic profiling and down-core analyses,
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, 2021a.
Vyse, S. A., Herzschuh, U., Pfalz, G., Diekmann, B., Nowaczyk, N. R., Pestryakova, L. A., and Biskaborn, B. K.: Sedimentological and biogeochemical dataset for Arctic glacial lake Rauchuagytgyn, Chukotka, Russia, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.929719, 2021b.
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.:
Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99–105, https://doi.org/10.1038/ngeo2578, 2016.
Wilson, C. R., Michelutti, N., Cooke, C. A., Briner, J. P., Wolfe, A. P.,
and Smol, J. P.: Arctic lake ontogeny across multiple interglaciations,
Quaternary Sci. Rev., 31, 112–126, https://doi.org/10.1016/j.quascirev.2011.10.018, 2012.
Wischnewski, J., Kramer, A., Kong, Z., Mackay, A. W., Simpson, G. L.,
Mischke, S., and Herzschuh, U.: Terrestrial and aquatic responses to climate
change and human impact on the southeastern Tibetan Plateau during the past
two centuries, Glob. Change Biol., 17, 3376–3391, https://doi.org/10.1111/j.1365-2486.2011.02474.x, 2011.
Wohlfarth, B., Lacourse, T., Bennike, O., Subetto, D., Tarasov, P., Demidov,
I., Filimonova, L., and Sapelko, T.: Climatic and environmental changes in
north-western Russia between 15,000 and 8000calyrBP: a review, Quaternary Sci. Rev., 26, 1871–1883, https://doi.org/10.1016/j.quascirev.2007.04.005, 2007.
Wolfe, A. P.: On diatom concentrations in lake sediments: results from an
inter-laboratory comparison and other tests performed on a uniform sample,
J. Paleolimnol., 18, 261–268, 1997.
Wunsam, S., Schmidt, R., and Klee, R.: Cyclotella-taxa (Bacillariophyceae)
in lakes of the Alpine region and their relationship to environmental
variables, Aquat. Sci., 57, 360–386, 1995.
Yoon, J. E., Yoo, K. C., Macdonald, A. M., Yoon, H. I., Park, K. T., Yang,
E. J., Kim, H. C., Lee, J. I., Lee, M. K., Jung, J., Park, J., Lee, J., Kim,
S., Kim, S. S., Kim, K., and Kim, I. N.: Reviews and syntheses: Ocean iron
fertilization experiments – past, present, and future looking to a future
Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project,
Biogeosciences, 15, 5847–5889, https://doi.org/10.5194/bg-15-5847-2018, 2018.
Zhuravlev, G., Kazymin, S., and Pukalo, P.: State geological map of the
Russian Federation, scale 1:200 000, Anjuyjsker-Chaunsker Series, Moscow,
St, 1999.
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry...
Altmetrics
Final-revised paper
Preprint