Articles | Volume 20, issue 1
https://doi.org/10.5194/bg-20-191-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-191-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting activation energies of litter-associated respiration and P uptake drive lower cumulative P uptake at higher temperatures
Nathan J. Tomczyk
CORRESPONDING AUTHOR
Odum School of Ecology, University of Georgia, Athens,
Georgia 30602, USA
Amy D. Rosemond
Odum School of Ecology, University of Georgia, Athens,
Georgia 30602, USA
Anna Kaz
Department of Oceanography and Coastal Sciences, Baton
Rouge, Louisiana 70803, USA
Jonathan P. Benstead
Department of Biological Sciences, University of Alabama,
Tuscaloosa, Alabama 35487, USA
Related authors
No articles found.
Stephen Plont, Delaney M. Peterson, Chelsea R. Smith, Charles T. Bond, Andrielle Larissa Kemajou Tchamba, Michelle A. Wolford, Kaci Zarek, Shannon L. Speir, C. Nathan Jones, Jonathan P. Benstead, Michelle H. Busch, Rebecca L. Hale, Connor L. Brown, Erin C. Seybold, Arial J. Shogren, Kevin A. Kuehn, Yaqi You, Colin R. Jackson, Amy J. Burgin, and Carla L. Atkinson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-559, https://doi.org/10.5194/essd-2025-559, 2025
Preprint under review for ESSD
Short summary
Short summary
Intermittent streams are widespread and shape biodiversity, ecosystem processes, and downstream water quality, yet remain underrepresented in monitoring efforts. We combined sensor and sampling approaches to track changes in hydrologic, ecological, and water quality patterns across in 3 watersheds. This dataset provides valuable context as to how changes in stream flow and connectivity drive hydrologic, biogeochemical, and ecological patterns in intermittent streams in the southeastern US.
Cited articles
Allen, A. P. and Gillooly, J. F.: Towards an integration of ecological
stoichiometry and the metabolic theory of ecology to better understand
nutrient cycling, Ecol. Lett., 12, 369–384,
https://doi.org/10.1111/j.1461-0248.2009.01302.x, 2009.
APHA: Standard Methods for the Examination of Water and Wastewater, 19th
ed., American Public Health Association, ISBN 0875532233, 1995.
Bott, T.: Primary production and community respiration, in: Methods in
Stream Ecology, edited by: Hauer, R. F. and Lamberti, G. A., Academic Press,
Burlington, MA, 663–690, 2006.
Brookshire, E. N. J., Valett, H. M., and Gerber, S.: Maintenance of
terrestrial nutrient loss signatures during in-stream transport, Ecology,
90, 293–299, https://doi.org/10.1890/08-0949.1, 2009.
Brookshire, E. N. J., Gerber, S., Webster, J. R., Vose, J. M., and Swank, W.
T.: Direct effects of temperature on forest nitrogen cycling revealed
through analysis of long-term watershed records, Glob. Chang. Biol., 17,
297–308, https://doi.org/10.1111/j.1365-2486.2010.02245.x, 2011.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.:
Toward a metabolic theory of ecology, Ecology, 85, 1771–1789,
https://doi.org/10.1890/03-9000, 2004.
Burgin, A. J., Yang, W. H., Hamilton, S. K., and Silver, W. L.: Beyond
carbon and nitrogen: How the microbial energy economy couples elemental
cycles in diverse ecosystems, Front. Ecol. Environ., 9, 44–52,
https://doi.org/10.1890/090227, 2011.
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S.
P., Havens, K. E., Lancelot, C., and Likens, G. E.: Controlling
eutrophication: Nitrogen and phosphorus, Science, 323, 1014–1015,
https://doi.org/10.1126/science.1167755, 2009.
Cross, W. F., Benstead, J. P., Frost, P. C., and Thomas, S. A.: Ecological
stoichiometry in freshwater benthic systems: recent progress and
perspectives, Freshw. Biol., 50, 1895–1912,
https://doi.org/10.1111/j.1365-2427.2005.01458.x, 2005.
Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D., and Nelson, D.:
Interactions between temperature and nutrients across levels of ecological
organization, Glob. Chang. Biol., 21, 1025–1040,
https://doi.org/10.1111/gcb.12809, 2015.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.: The Dual
Arrhenius and Michaelis-Menten kinetics model for decomposition of soil
organic matter at hourly to seasonal time scales, Glob. Chang. Biol., 18,
371–384, https://doi.org/10.1111/j.1365-2486.2011.02546.x, 2012.
Dodds, W. K., López, A. J., Bowden, W. B., Gregory, S., Grimm, N. B.,
Hamilton, S. K., Hershey, A. E., Martí, E., McDowell, W. H., Meyer, J.
L., Morrall, D., Mulholland, P. J., Peterson, B. J., Tank, J. L., Valett, H.
M., Webster, J. R., and Wollheim, W.: N uptake as a function of
concentration in streams, J. North Am. Benthol. Soc., 21, 206–220,
https://doi.org/10.2307/1468410, 2002.
Doi, H., Cherif, M., Iwabuchi, T., Katano, I., Stegen, J. C., and Striebel,
M.: Integrating elements and energy through the metabolic dependencies of
gross growth efficiency and the threshold elemental ratio, Oikos, 119, 752–765,
https://doi.org/10.1111/j.1600-0706.2009.18540.x, 2010.
Findlay, S., Tank, J., Dye, S., Valett, H. M., Mulholland, P. J., McDowell,
W. H., Johnson, S. L., Hamilton, S. K., Edmonds, J., Dodds, W. K., and
Bowden, W. B.: A cross-system comparison of bacterial and fungal biomass in
detritus pools of headwater Streams, Microb. Ecol., 43, 55–66,
https://doi.org/10.1007/10.007/s00248-001-1020-x, 2002.
Godwin, C. M. and Cotner, J. B.: Carbon:phosphorus homeostasis of aquatic
bacterial assemblages is mediated by shifts in assemblage composition,
Aquat. Microb. Ecol., 73, 245–258, https://doi.org/10.3354/ame01719, 2014.
Godwin, C. M. and Cotner, J. B.: Aquatic heterotrophic bacteria have highly
flexible phosphorus content and biomass stoichiometry, ISME J., 9,
2324–2327, https://doi.org/10.1038/ismej.2015.34, 2015.
Gulis, V., Suberkropp, K., and Rosemond, A. D.: Comparison of fungal
activities on wood and leaf litter in unaltered and nutrient-enriched
headwater streams, Appl. Environ. Microbiol., 74, 1094–1101,
https://doi.org/10.1128/AEM.01903-07, 2008.
Gulis, V., Kuehn, K. A., Schoettle, L. N., Leach, D., Benstead, J. P., and
Rosemond, A. D.: Changes in nutrient stoichiometry, elemental homeostasis
and growth rate of aquatic litter-associated fungi in response to inorganic
nutrient supply, ISME J., 11, 2729–2739,
https://doi.org/10.1038/ismej.2017.123, 2017.
Hall, R. O. and Tank, J. L.: Ecosystem metabolism controls nitrogen uptake
in streams in Grand Teton National Park, Wyoming, Limnol. Oceanogr., 48,
1120–1128, https://doi.org/10.4319/lo.2003.48.3.1120, 2003.
Harms, T. K., Cook, C. L., Wlostowski, A. N., Gooseff, M. N., and Godsey, S.
E.: Spiraling Down Hillslopes: Nutrient Uptake from Water Tracks in a
Warming Arctic, Ecosystems, 22, 1546–1560, https://doi.org/10.1007/s10021-019-00355-z,
2019.
Hoellein, T. J., Tank, J. L., Rosi-marshall, E. J., Entrekin, S. A., and
Lamberti, G. A.: Controls on spatial and temporal variation of nutrient
uptake in three Michigan headwater streams, Limnol. Oceanogr., 52,
1964–1977, 2007.
Hood, J. M., Benstead, J. P., Cross, W. F., Huryn, A. D., Johnson, P. W.,
Gíslason, G. M., Junker, J. R., Nelson, D., Ólafsson, J. S., and
Tran, C.: Increased resource use efficiency amplifies positive response of
aquatic primary production to experimental warming, Glob. Chang. Biol., 24,
1069–1084, https://doi.org/10.1111/gcb.13912, 2018.
Kaushal, S. S., Likens, G. E., Jaworski, N. A., Pace, M. L., Sides, A. M.,
Seekell, D., Belt, K. T., Secor, D. H., and Wingate, R. L.: Rising stream
and river temperatures in the United States, Front. Ecol. Environ., 8,
461–466, https://doi.org/10.1890/090037, 2010.
Li, J., Wang, G., Mayes, M. A., Allison, S. D., Frey, S. D., Shi, Z., Hu, X.
M., Luo, Y., and Melillo, J. M.: Reduced carbon use efficiency and increased
microbial turnover with soil warming, Glob. Chang. Biol., 25, 900–910,
https://doi.org/10.1111/gcb.14517, 2019.
Liang, X. Q., Xu, L., Li, H., He, M. M., Qian, Y. C., Liu, J., Nie, Z. Y.,
Ye, Y. S., and Chen, Y.: Influence of N fertilization rates, rainfall, and
temperature on nitrate leaching from a rainfed winter wheat field in Taihu
watershed, Phys. Chem. Earth, 36, 395–400,
https://doi.org/10.1016/j.pce.2010.03.017, 2011.
Manning, D. W. P., Rosemond, A. D., Kominoski, J. S., Gulis, V., Benstead,
J. P., and Maerz, J. C.: Detrital stoichiometry as a critical nexus for the
effects of streamwater nutrients on leaf litter breakdown rates, Ecology,
96, 2214–2224, https://doi.org/10.1890/14-1582.1, 2015.
Manning, D. W. P., Rosemond, A. D., Gulis, V., Benstead, J. P., and
Kominoski, J. S.: Nutrients and temperature additively increase stream
microbial respiration, Glob. Chang. Biol., 24, 233–247,
https://doi.org/10.1111/gcb.13906, 2018.
Manzoni, S., Taylor, P., Richter, A., Porporato, A., and Ågren, G. I.:
Environmental and stoichiometric controls on microbial carbon-use efficiency
in soils, New Phytol., 196, 79–91,
https://doi.org/10.1111/j.1469-8137.2012.04225.x, 2012.
Marks, J. C.: Revisiting the fates of dead leaves that fall into streams,
Annu. Rev. Ecol. Evol. Syst., 547–568,
https://doi.org/10.1146/annurev-ecolsys-110218-024755, 2019.
O'Brien, J. M., Dodds, W. K., Wilson, K. C., Murdock, J. N., and Eichmiller,
J.: The saturation of N cycling in Central Plains streams: 15∘ N experiments
across a broad gradient of nitrate concentrations, Biogeochemistry, 84,
31–49, https://doi.org/10.1007/s10533-007-9073-7, 2007.
Payn, R. A., Webster, J. R., Mulholland, P. J., Valett, H. M., and Dodds, W.
K.: Estimation of stream nutrient uptake from nutrient addition experiments,
Limnol. Oceanogr.-Meth., 3, 174–182,
https://doi.org/10.4319/lom.2005.3.174, 2005.
Peterson, B. J.: Control of Nitrogen Export from Watersheds by Headwater
Streams, Science, 292, 86–90,
https://doi.org/10.1126/science.1056874, 2001.
Rasmussen, J. J., Baattrup-Pedersen, A., Riis, T., and Friberg, N.: Stream
ecosystem properties and processes along a temperature gradient, Aquat.
Ecol., 45, 231–242, https://doi.org/10.1007/s10452-010-9349-1, 2011.
Schlesinger, W. H., Cole, J. J., Finzi, A. C., and Holland, E. A.:
Introduction to coupled biogeochemical cycles, Front. Ecol. Environ., 9,
5–8, https://doi.org/10.1890/090235, 2011.
Scott, J. T., Cotner, J. B., and LaPara, T. M.: Variable stoichiometry and
homeostatic regulation of bacterial biomass elemental composition, Front.
Microbiol., 3, 1–8, https://doi.org/10.3389/fmicb.2012.00042, 2012.
De Senerpont Domis, L. N., Van De Waal, D. B., Helmsing, N. R., Van Donk,
E., and Mooij, W. M.: Community stoichiometry in a changing world: Combined
effects of warming and eutrophication on phytoplankton dynamics, Ecology,
95, 1485–1495, https://doi.org/10.1890/13-1251.1, 2014.
Song, C., Dodds, W. K., Rüegg, J., Argerich, A., Baker, C. L., Bowden,
W. B., Douglas, M. M., Farrell, K. J., Flinn, M. B., Garcia, E. A., Helton,
A. M., Harms, T. K., Jia, S., Jones, J. B., Koenig, L. E., Kominoski, J. S.,
McDowell, W. H., McMaster, D., Parker, S. P., Rosemond, A. D., Ruffing, C.
M., Sheehan, K. R., Trentman, M. T., Whiles, M. R., Wollheim, W. M., and
Ballantyne, F.: Continental-scale decrease in net primary productivity in
streams due to climate warming, Nat. Geosci., 11, 1–6,
https://doi.org/10.1038/s41561-018-0125-5, 2018.
Sterner, R. W. and Elser, J. J.: Ecological stoichiometry: The biology of
elements from molecules to the biosphere, Princeton University Press,
Princeton, New Jersey, USA,
https://doi.org/10.1111/j.1469-8137.2010.03214.x, 2002.
Stets, E. G., Sprague, L. A., Oelsner, G. P., Johnson, H. M., Murphy, J. C.,
Ryberg, K., Vecchia, A. V., Zuellig, R. E., Falcone, J. A., and Riskin, M.
L.: Landscape Drivers of Dynamic Change in Water Quality of U.S. Rivers,
Environ. Sci. Technol., 54, 4336–4343,
https://doi.org/10.1021/acs.est.9b05344, 2020.
Suberkropp, K., Gulis, V., Rosemond, A. D., and Bensteadb, J. P.: Ecosystem
and Physiological Scales of Microbial Responses to Nutrients in a
Detritus-Based Stream: Results of a 5-Year Continuous Enrichment, Limnol.
Oceanogr., 55, 149–160, 2010.
Swank, W. T. and Crossley, D. A.: Forest hydrology and ecology at Coweeta,
Springer, New York, NY,
https://doi.org/10.1007/978-1-4612-3732-7, 1988.
Tank, J. L., Martí, E., Riis, T., von Schiller, D., Reisinger, A. J.,
Dodds, W. K., Whiles, M. R., Ashkenas, L. R., Bowden, W. B., Collins, S. M.,
Crenshaw, C. L., Crowl, T. A., Griffiths, N. A., Grimm, N. B., Hamilton, S.
K., Johnson, S. L., McDowell, W. H., Norman, B. M., Rosi, E. J., Simon, K.
S., Thomas, S. A., and Webster, J. R.: Partitioning assimilatory nitrogen
uptake in streams: an analysis of stable isotope tracer additions across
continents, Ecol. Monogr., 88, 120–138, https://doi.org/10.1002/ecm.1280,
2018.
Thrane, J. E., Hessen, D. O., and Andersen, T.: Plasticity in algal
stoichiometry: Experimental evidence of a temperature-induced shift in
optimal supply N:P ratio, Limnol. Oceanogr., 62, 1346–1354,
https://doi.org/10.1002/lno.10500, 2017.
Tomczyk, N. J., Rosemond, A. D., Bumpers, P. M., Cummins, C. S., Wenger, S.
J., and Benstead, J. P.: Ignoring temperature variation leads to
underestimation of the temperature sensitivity of plant litter
decomposition, Ecosphere, 11, e03050, https://doi.org/10.1002/ecs2.3050, 2020.
Tomczyk, N.: Contrasting activation energies of litter-associated respiration and P
uptake drive lower cumulative P uptake at higher temperatures [data and code]
https://doi.org/10.5281/zenodo.7361903, 2022.
von Schiller, D., Bernal, S., Sabater, F., and Martí, E.: A round-trip
ticket: the importance of release processes for in-stream nutrient
spiraling, Freshw. Sci., 34, 20–30, https://doi.org/10.1086/679015, 2015.
Valett, H. M., Thomas, S. A., Mulholland, P. J., Webster, J. R., Dahm, C.
N., Fellows, C. S., Crenshaw, C. L., and Peterson, C. G.: Endogenous and
Exogenous Control of Ecosystem Function: N Cycling in Headwater Streams,
Ecology, 89, 3515–3527, https://doi.org/10.1890/07-1003.1, 2008.
Walker, T. W. N., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I.
W., Woebken, D., Janssens, I. A., Sigurdsson, B. D., and Richter, A.:
Microbial temperature sensitivity and biomass change explain soil carbon
loss with warming, Nat. Clim. Chang., 8, 885–889,
https://doi.org/10.1038/s41558-018-0259-x, 2018.
Wallace, J. B., Eggert, S. L., Meyer, J. L., and Webster, J. R.: Stream
invertebrate productivity linked to forest subsidies: 37 stream-years of
reference and experimental data, Ecology, 96, 1213–1228,
https://doi.org/10.1890/14-1589.1.sm, 2015.
Webster, J. and Tank, J.: Effects of litter exclusion and wood removal on
phosphorus and nitrogen retention in a forest stream, Verh Intern. Verein
Limnol, 1995–1998,
https://doi.org/10.1080/03680770.1998.11901453, 2000.
Webster, J. R., Newbold, J. D., and Lin, L.: Nutrient spiraling and
transport in streams: The importance of in-stream biological processes to
nutrient dynamics in streams, in: Stream Ecosystems in a Changing
Environment, edited by: Jones, J. B. and Stanley, E. H., Academic Press,
Cambridge, Massachusetts, USA, 181–239,
https://doi.org/10.1016/B978-0-12-405890-3.00005-1, 2016.
Weigelhofer, G., Ramião, J. P., Puritscher, A., and Hein, T.: How do
chronic nutrient loading and the duration of nutrient pulses affect nutrient
uptake in headwater streams?, Biogeochemistry, 141, 249–263,
https://doi.org/10.1007/s10533-018-0518-y, 2018.
Wilmot, O. J., Hood, J. M., Huryn, A. D., and Benstead, J. P.: Decomposing
decomposition: isolating direct effects of temperature from other drivers of
detrital processing, Ecology, 102, 1–12, https://doi.org/10.1002/ecy.3467,
2021.
Woods, H. A., Makino, W., Cotner, J. B., Hobbie, S. E., Harrison, J. F.,
Acharya, K., and Elser, J. J.: Temperature and the chemical composition of
poikilothermic organisms, Funct. Ecol., 17, 237–245,
https://doi.org/10.1046/j.1365-2435.2003.00724.x, 2003.
Yuan, Z. Y. and Chen, H. Y. H.: Decoupling of nitrogen and phosphorus in
terrestrial plants associated with global changes, Nat. Clim. Chang., 5,
465–469, https://doi.org/10.1038/nclimate2549, 2015.
Yvon-Durocher, G., Dossena, M., Trimmer, M., Woodward, G., and Allen, A. P.:
Temperature and the biogeography of algal stoichiometry, Glob. Ecol.
Biogeogr., 24, 562–570, https://doi.org/10.1111/geb.12280, 2015.
Zhang, J. and Elser, J. J.: Carbon: Nitrogen: Phosphorus stoichiometry in
fungi: A meta-analysis, Front. Microbiol., 8, 1–9,
https://doi.org/10.3389/fmicb.2017.01281, 2017.
Short summary
Warming is expected to increase rates of microbial metabolism, but the effect of warming on nutrient demand is unclear. Our experiments demonstrate that microbial nutrient uptake increases less with temperature than metabolism, particularly when environmental nutrient concentrations are low. However, our simulation models suggest that warming may actually lead to declines in ecosystem-scale nutrient uptake as warming accelerates the depletion of carbon substrates required for microbial growth.
Warming is expected to increase rates of microbial metabolism, but the effect of warming on...
Altmetrics
Final-revised paper
Preprint