Articles | Volume 20, issue 20
https://doi.org/10.5194/bg-20-4221-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-4221-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optical and radar Earth observation data for upscaling methane emissions linked to permafrost degradation in sub-Arctic peatlands in northern Sweden
Sofie Sjögersten
CORRESPONDING AUTHOR
School of Biosciences, University of Nottingham, College Road, Sutton
Bonington, Loughborough, LE12 5RD, UK
Martha Ledger
School of Biosciences, University of Nottingham, College Road, Sutton
Bonington, Loughborough, LE12 5RD, UK
Matthias Siewert
Department of Ecology and Environmental
Sciences, Umeå University, KB H4, Linnaeus väg 6, 901 87 Umeå,
Sweden
Betsabé de la Barreda-Bautista
School of Biosciences, University of Nottingham, College Road, Sutton
Bonington, Loughborough, LE12 5RD, UK
School of Geography, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK
Andrew Sowter
Terra Motion Ltd, Ingenuity Centre, Triumph Rd, Nottingham, NG7 2TU, UK
David Gee
Terra Motion Ltd, Ingenuity Centre, Triumph Rd, Nottingham, NG7 2TU, UK
Giles Foody
School of Geography, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK
Doreen S. Boyd
School of Geography, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK
Related authors
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024, https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
Short summary
Climate warming is thawing permafrost that makes up palsa (frost mound) peatlands, risking ecosystem collapse and carbon release as methane. We measure this regional degradation using radar satellite technology to examine ground elevation changes and show how terrain roughness measurements can be used to estimate local permafrost damage. We find that over half of Sweden's largest palsa peatlands are degrading, with the worse impacts to the north linked to increased winter precipitation.
Selena Georgiou, Edward T. A. Mitchard, Bart Crezee, Paul I. Palmer, Greta C. Dargie, Sofie Sjögersten, Corneille E. N. Ewango, Ovide B. Emba, Joseph T. Kanyama, Pierre Bola, Jean-Bosco N. Ndjango, Nicholas T. Girkin, Yannick E. Bocko, Suspense A. Ifo, and Simon L. Lewis
EGUsphere, https://doi.org/10.5194/egusphere-2022-580, https://doi.org/10.5194/egusphere-2022-580, 2022
Preprint archived
Short summary
Short summary
Two major vegetation types, hardwood trees and palms, overlay the Central Congo Basin peatland complex, each dominant in different locations. We investigated the influence of terrain and climatological variables on their distribution, using a regression model, and found elevation and seasonal rainfall and temperature contribute significantly. There are indications of an optimal range of net water input for palm swamp to dominate, above and below which hardwood swamp dominates.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024, https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
Short summary
Climate warming is thawing permafrost that makes up palsa (frost mound) peatlands, risking ecosystem collapse and carbon release as methane. We measure this regional degradation using radar satellite technology to examine ground elevation changes and show how terrain roughness measurements can be used to estimate local permafrost damage. We find that over half of Sweden's largest palsa peatlands are degrading, with the worse impacts to the north linked to increased winter precipitation.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Selena Georgiou, Edward T. A. Mitchard, Bart Crezee, Paul I. Palmer, Greta C. Dargie, Sofie Sjögersten, Corneille E. N. Ewango, Ovide B. Emba, Joseph T. Kanyama, Pierre Bola, Jean-Bosco N. Ndjango, Nicholas T. Girkin, Yannick E. Bocko, Suspense A. Ifo, and Simon L. Lewis
EGUsphere, https://doi.org/10.5194/egusphere-2022-580, https://doi.org/10.5194/egusphere-2022-580, 2022
Preprint archived
Short summary
Short summary
Two major vegetation types, hardwood trees and palms, overlay the Central Congo Basin peatland complex, each dominant in different locations. We investigated the influence of terrain and climatological variables on their distribution, using a regression model, and found elevation and seasonal rainfall and temperature contribute significantly. There are indications of an optimal range of net water input for palm swamp to dominate, above and below which hardwood swamp dominates.
Andrew V. Bradley, Roxane Andersen, Chris Marshall, Andrew Sowter, and David J. Large
Earth Surf. Dynam., 10, 261–277, https://doi.org/10.5194/esurf-10-261-2022, https://doi.org/10.5194/esurf-10-261-2022, 2022
Short summary
Short summary
The condition of peatland largely determines its capacity to store carbon, but peatland condition is not accurately known. Combining the knowledge of management, vegetation, and detecting differences in seasonal surface movement from satellite radar data, we map peat condition. In a blanket bog landscape we discovered the presence of wetter and dryer conditions, which could help guide restoration decisions, and we conclude that this approach could be transferred peat management worldwide.
Cited articles
Åkerman, H. J. and Johansson, M.: Thawing permafrost and thicker
active layers in sub-arctic Sweden, Permafrost Periglac., 19, 279–292,
https://doi.org/10.1002/ppp.626, 2008.
Alshammari, L., Large, D. J., Boyd, D. S., Sowter, A., Anderson, R.,
Andersen, R., and Marsh, S.: Long-term peatland condition assessment
via surface motion monitoring using the ISBAS DInSAR technique over the Flow
Country, Scotland, Remote Sens., 10, 1103, https://doi.org/10.3390/rs10071103,
2018.
Backe, S.: Kartering av Sveriges palsmyrar, Länsstyrelsen i Norrbottens län., 2014.
Ballantyne, C. K.: Periglacial Geomorphology, John Wiley and Sons, https://doi.org/10.1111/nzg.12203, 2018.
Bernhardt, E. S., Blaszczak, J. R., Ficken, C. D., Fork, M. L., Kaiser, K.
E., and Seybold, E. C.: Control points in ecosystems: Moving beyond the hot
spot hot moment concept, Ecosystems, 20, 665–682,
https://doi.org/10.1007/s10021-016-0103-y, 2017.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G., Meiklejohn I., Moskalenko, N., Oliva, M., Phillips M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun.,
10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017.
Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G.,
and Westermann, S.: An observation-based constraint on permafrost loss as a
function of global warming, Nat. Clim. Change, 7, 340–344,
https://doi.org/10.1038/nclimate3262, 2017.
Copernicus, ESA:
Copernicus Open Access Hub, https://scihub.copernicus.eu/dhus/#/home, last access: 5 October 2023.
de la Barreda-Bautista, B., Boyd, D. S., Ledger, M., Siewert, M. B.,
Chandler, C., Bradley, A. V., Gee, D., Large, D. J., Olofsson, J., Sowter,
A., and Sjögersten, S.: Towards a monitoring approach for understanding
permafrost degradation and linked subsidence in Arctic peatlands, Remote
Sens., 14, 444, https://doi.org/10.3390/rs14030444, 2022.
Dias, A. T. C., Hoorens, B., Van Logtestijn, R. S. P., Vermaat, J. E., and
Aerts, R.: Plant species composition can be used as a proxy to predict
methane missions in peatland ecosystems after land-use changes, Ecosystems,
13, 526–538, https://doi.org/10.1007/s10021-010-9338-1, 2010.
Dzyuban, A.: Intensity of the microbiological processes of the methane cycle
in different types of Baltic lakes, Microbiology, 71, 98–104, 2022.
Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P., and
Harden, J. W.: Differential response of carbon fluxes to climate in three
peatland ecosystems that vary in the presence and stability of permafrost,
J. Geophys. Res.-Biogeo., 119, 1576–1595,
https://doi.org/10.1002/2014JG002683, 2014.
Fewster, R. E., Morris, P. J., Ivanovic, R. F., Swindles, G. T., Peregon, A.
M., and Smith, C. J.: Imminent loss of climate space for permafrost
peatlands in Europe and Western Siberia, Nat. Clim. Change, 12, 373–379,
https://doi.org/10.1038/s41558-022-01296-7, 2022.
Foody, G. M. and Mathur, A.: A relative evaluation of multiclass image
classification by support vector machines, IEEE T. Geosci. Remote, 42,
1335–1343, https://doi.org/10.1109/TGRS.2004.827257, 2004.
Ge, M., Koskinen, M., Korrensalo, A., Mäkiranta, P., Lohila, A., and Pihlatie, M.: Species-specific effects of vascular plants on methane transport in northern peatlands, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2574, https://doi.org/10.5194/egusphere-egu22-2574, 2022.
Girkin, N. T.: Tropical Forest Greenhouse Gas Emissions: Root Regulation of
Soil Processes and Fluxes, University of Nottingham, https://eprints.nottingham.ac.uk/id/eprint/52949 (last access: 6 October 2023), 2018.
Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and Machida, T.:
Regional methane emission from West Siberia mire landscapes, Environ. Res.
Lett., 6, 045214, https://doi.org/10.1088/1748-9326/6/4/045214, 2011.
Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E., and Schuur, E. A.
G.: Changing permafrost in a warming world and feedbacks to the Earth
system, Environ. Res. Lett., 11, 040201,
https://doi.org/10.1088/1748-9326/11/4/040201, 2016.
Hugelius, G.: Spatial upscaling using thematic maps: An analysis of
uncertainties in permafrost soil carbon estimates, Global Biogeochem. Cy.,
26, GB2026, https://doi.org/10.1029/2011GB004154, 2012.
Hugelius, G. A.-O., Loisel, J. A.-O., Chadburn, S. A.-O. X., Jackson, R.
A.-O., Jones, M. A.-O., MacDonald, G., Marushchak, M., Olefeldt, D. A.-O.,
Packalen, M., Siewert, M. A.-O., Treat, C. A.-O., Turetsky, M., Voigt, C.
A.-O., and Yu, Z. A.-O.: Large stocks of peatland carbon and nitrogen are
vulnerable to permafrost thaw, P. Natl. Acad. Sci. USA, 117,
20438–20446, https://doi.org/10.1073/pnas, 2020.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp.,
https://doi.org/10.1017/9781009157896, 2021.
Johansson, M., Callaghan, T. V., Bosiö, J., Åkerman, H. J.,
Jackowicz-Korczynski, M., and Christensen, T. R.: Rapid responses of
permafrost and vegetation to experimentally increased snow cover in
sub-arctic Sweden, Environ. Res. Lett., 8, 035025,
https://doi.org/10.1088/1748-9326/8/3/035025, 2013.
Ledger, M., Sjögersten, S., Siewert, M., de la Barreda-Bautista, B., Sowter, A., Gee, D., Foody, G., and Boyd, D.: Generating vegetation and methane maps for sub-Arctic peatlands with degrading permafrost, Figshare [code], https://doi.org/10.6084/m9.figshare.24248545, 2023.
Liebner, S., Ganzert, L., Kiss, A., Yang, S., Wagner, D., and Svenning, M.
M.: Shifts in methanogenic community composition and methane fluxes along
the degradation of discontinuous permafrost, Front. Microbiol., 6, 356, https://doi.org/10.3389/fmicb.2015.00356,
2015.
Luoto, M. and Seppälä, M.: Thermokarst ponds as indicators of the
former distribution of palsas in Finnish Lapland, Permafrost Periglac.,
14, 19–27, https://doi.org/10.1002/ppp.441, 2003.
Maksyutov, S., Glagolev, M., Kleptsova, I., Sabrekov, A., Peregon, A., and
Machida, T.: Methane emissions from the West Siberian wetlands, American Geophysical Union, Fall Meeting 2010, abstract id. GC41D-02, 2010.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet,
N.: Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
Miglovets, M., Zagirova, S., Goncharova, N., and Mikhailov, O.: Methane
emission from palsa mires in northeastern European Russia, Russ. Meteorol.
Hydrol., 46, 52–59, 2021.
Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A., Harden, J. W., Jastrow, J. D., Ping, C. L., Riley, W. J., Schuur, E. A. G., Matamala, R., Siewert, M., Nave, L. E., Koven, C. D., Fuchs, M., Palmtag, J., Kuhry, P., Treat, C. C., Zubrzycki, S., Hoffman, F. M., Elberling, B., Camill, P., Veremeeva, A., and Orr, A.: Spatial heterogeneity and environmental predictors of permafrost region
soil organic carbon stocks, Sci. Adv., 7, eaaz5236,
https://doi.org/10.1126/sciadv.aaz5236, 2021.
Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M.-J., Willis, M., Bates, B., Willamson, C., and Peterman, K.: ArcticDEM; a publically available, high resolution elevation model of the Arctic,
EGU General Assembly Conference Abstracts, EPSC2016-8396, 2016.
Nykänen, H., Heikkinen, J. E., Pirinen, L., Tiilikainen, K., and
Martikainen, P. J.: Annual CO2 exchange and CH4 fluxes on a subarctic palsa
mire during climatically different years, Global Biogeochem. Cy., 17, 1018, https://doi.org/10.1029/2002GB001861,
2013.
Olefeldt, D., Roulet, N. T., Bergeron, O., Crill, P., Bäckstrand, K.,
and Christensen, T. R.: Net carbon accumulation of a high-latitude
permafrost palsa mire similar to permafrost-free peatlands, Geophys. Res.
Lett., 39, L03501, https://doi.org/10.1029/2011GL050355, 2012.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and McGuire, A. D.:
Environmental and physical controls on northern terrestrial methane
emissions across permafrost zones, Glob. Change Biol., 19, 589–603,
2013.
Olofsson, P., Foody, G. M., Stehman, S. V., and Woodcock, C. E.: Making
better use of accuracy data in land change studies: Estimating accuracy and
area and quantifying uncertainty using stratified estimation, Remote Sens.
Environ., 129, 122–131,
https://doi.org/10.1016/j.rse.2012.10.031, 2013.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and
Wulder, M. A.: Good practices for estimating area and assessing accuracy of
land change, Remote Sens. Environ., 148, 42–57,
https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Olvmo, M., Holmer, B., Thorsson, S., Reese, H., and Lindberg, F.: Sub-arctic
palsa degradation and the role of climatic drivers in the largest coherent
palsa mire complex in Sweden (Vissátvuopmi), 1955–2016, Sci. Rep.-UK,
10, 8937, https://doi.org/10.1038/s41598-020-65719-1, 2020.
Powell, R. L., Matzke, N., Souza, C., Clark, M., Numata, I., Hess, L., and
Roberts, D.: Sources of error in accuracy assessment of thematic land-cover
maps in the Brazilian Amazon, Remote Sens. Environ., 90, 221–234,
https://doi.org/10.1016/j.rse.2003.12.007, 2004.
Sannel, A. B. K. and Kuhry, P.: Warming-induced destabilization of peat
plateau/thermokarst lake complexes, J. Geophys. Res.-Biogeo., 116, G03035,
https://doi.org/10.1029/2010JG001635, 2011.
Sannel, A. B. K., Hugelius, G., Jansson, P., and Kuhry, P.: Permafrost
warming in a subarctic peatland – which meteorological controls are most
important?, Permafrost Periglac., 27, 177–188,
https://doi.org/10.1002/ppp.1862, 2016.
Schneider von Deimling, T., Meinshausen, M., Levermann, A., Huber, V., Frieler, K., Lawrence, D. M., and Brovkin, V.: Estimating the near-surface permafrost-carbon feedback on global warming, Biogeosciences, 9, 649–665, https://doi.org/10.5194/bg-9-649-2012, 2012.
Schuur, E. A. G. and Abbott, B.: High risk of permafrost thaw, Nature,
480, 32–33, https://doi.org/10.1038/480032a, 2011.
Siewert, M. B.: High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment, Biogeosciences, 15, 1663–1682, https://doi.org/10.5194/bg-15-1663-2018, 2018.
Siewert, M. B. and Olofsson, J.: Scale-dependency of Arctic ecosystem
properties revealed by UAV, Environ. Res. Lett., 15, 094030,
https://doi.org/10.1088/1748-9326/aba20b, 2020.
Siewert, M. B., Hanisch, J., Weiss, N., Kuhry, P., Maximov, T. C., and
Hugelius, G.: Comparing carbon storage of Siberian tundra and taiga
permafrost ecosystems at very high spatial resolution, J. Geophys.
Res.-Biogeo., 120, 1973–1994,
https://doi.org/10.1002/2015JG002999, 2015.
Siewert, M. B., Lantuit, H., Richter, A., and Hugelius, G.: Permafrost
causes unique fine-scale spatial variability across tundra soils, Global
Biogeochem. Cy., 35, e2020GB006659,
https://doi.org/10.1029/2020GB006659, 2021.
Sjöberg, Y., Marklund, P., Pettersson, R., and Lyon, S. W.: Geophysical mapping of palsa peatland permafrost, The Cryosphere, 9, 465–478, https://doi.org/10.5194/tc-9-465-2015, 2015.
Sjöberg, Y., Siewert, M. B., Rudy, A. C. A., Paquette, M., Bouchard, F.,
Malenfant-Lepage, J., and Fritz, M.: Hot trends and impact in permafrost
science, Permafrost Periglac., 31, 461–471,
https://doi.org/10.1002/ppp.2047, 2020.
Sjögersten, S., Caul, S., Daniell, T. J., Jurd, A. P. S., O'Sullivan, O.
S., Stapleton, C. S., and Titman, J. J.: Organic matter chemistry controls
greenhouse gas emissions from permafrost peatlands, Soil Biol. Biochem., 98,
42–53, https://doi.org/10.1016/j.soilbio.2016.03.016, 2016.
Ström, L. and Christensen, T. R.: Below ground carbon turnover and
greenhouse gas exchanges in a sub-arctic wetland, Soil Biol. Biochem.,
39, 1689–1698,
https://doi.org/10.1016/j.soilbio.2007.01.019, 2007.
Ström, L., Ekberg, A., Mastepanov, M., and Røjle Christensen, T.: The
effect of vascular plants on carbon turnover and methane emissions from a
tundra wetland, Glob. Change Biol., 9, 1185–1192,
https://doi.org/10.1046/j.1365-2486.2003.00655.x, 2003.
Ström, L., Mastepanov, M., and Christensen, T. R.: Species-specific
effects of vascular plants on carbon turnover and methane emissions from
wetlands, Biogeochemistry, 75, 65–82,
https://doi.org/10.1007/s10533-004-6124-1, 2005.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem Cy., 23, GB2023,
https://doi.org/10.1029/2008GB003327, 2009.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D.,
Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence,
D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release
through abrupt permafrost thaw, Nat. Geosci., 13, 138–143,
https://doi.org/10.1038/s41561-019-0526-0, 2020.
van Huissteden, J., Teshebaeva, K., Cheung, Y., Magnússon, R. Í.,
Noorbergen, H., Karsanaev, S. V., Maximov, T. C., and Dolman, A. J.:
Geomorphology and InSAR-tracked surface displacements in an ice-rich Yedoma
landscape, Front. Earth Sci., 9, 680565,
https://doi.org/10.3389/feart.2021.680565, 2021.
Varner, R. K., Crill, P. M., Frolking, S., McCalley, C. K., Burke, S. A.,
Chanton, J. P., Holmes, M. E., Saleska, S., and Palace, M. W.:
Permafrost thaw driven changes in hydrology and vegetation cover increase
trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014,
Philos. T. R. Soc. A, 380, 20210022,
https://doi.org/10.1098/rsta.2021.0022, 2022.
Walter, K. M., Zimov, S., Chanton, J. P., Verbyla, D., and Chapin, F. S.:
Methane bubbling from Siberian thaw lakes as a positive feedback to climate
warming, Nature, 443, 71–75, 2006.
Walter Anthony, K., Daanen, R., Anthony, P., Schneider von Deimling, T.,
Ping, C.-L., Chanton, J. P., and Grosse, G.: Methane emissions proportional
to permafrost carbon thawed in Arctic lakes since the 1950s, Nat. Geosci.,
9, 679–682, https://doi.org/10.1038/ngeo2795, 2016.
Xie, Y., Sha, Z., and Yu, M.: Remote sensing imagery in vegetation mapping:
a review, J. Plant Ecol., 1, 9–23, https://doi.org/10.1093/jpe/rtm005,
2008.
Zuidhoff, F. S. and Kolstrup, E.: Changes in palsa distribution in relation
to climate change in Laivadalen, northern Sweden, especially 1960–1997,
Permafrost Periglac., 11, 55–69,
https://doi.org/10.1002/(SICI)1099-1530(200001/03)11:1<55::AID-PPP338>3.0.CO;2-T, 2000.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(3323 KB) - Full-text XML
- Corrigendum
-
Supplement
(5270 KB) - BibTeX
- EndNote
Short summary
Permafrost thaw in Arctic regions is increasing methane emissions, but quantification is difficult given the large and remote areas impacted. We show that UAV data together with satellite data can be used to extrapolate emissions across the wider landscape as well as detect areas at risk of higher emissions. A transition of currently degrading areas to fen type vegetation can increase emission by several orders of magnitude, highlighting the importance of quantifying areas at risk.
Permafrost thaw in Arctic regions is increasing methane emissions, but quantification is...
Altmetrics
Final-revised paper
Preprint