Articles | Volume 20, issue 20
https://doi.org/10.5194/bg-20-4339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-4339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mobilisation thresholds for coral rubble and consequences for windows of reef recovery
Tania M. Kenyon
CORRESPONDING AUTHOR
Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Australia
Daniel Harris
School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Australia
Tom Baldock
School of Civil Engineering, The University of Queensland, St. Lucia, Australia
David Callaghan
School of Civil Engineering, The University of Queensland, St. Lucia, Australia
Christopher Doropoulos
Commonwealth Scientific and Industrial Research Organisation, St. Lucia, Australia
Gregory Webb
School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Australia
Steven P. Newman
Banyan Tree Marine Laboratory, Vabbinfaru, North Malé Atoll, Maldives
Peter J. Mumby
Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Australia
Related authors
No articles found.
David P. Callaghan and Michael G. Hughes
Nat. Hazards Earth Syst. Sci., 22, 2459–2472, https://doi.org/10.5194/nhess-22-2459-2022, https://doi.org/10.5194/nhess-22-2459-2022, 2022
Short summary
Short summary
A new method was developed to estimate changes in flood hazard under climate change. We use climate projections covering New South Wales, Australia, with two emission paths of business as usual and one with reduced emissions. We apply our method to the lower floodplain of the Gwydir Valley with changes in flood hazard provided over the next 90 years compared with the previous 50 years. We find that changes in flood hazard decrease over time within the Gwydir Valley floodplain.
George Roff, Jennifer Joseph, and Peter J. Mumby
Biogeosciences, 17, 5909–5918, https://doi.org/10.5194/bg-17-5909-2020, https://doi.org/10.5194/bg-17-5909-2020, 2020
Short summary
Short summary
In recent decades, extensive mortality of reef-building corals throughout the Caribbean region has led to the erosion of reef frameworks and declines in biodiversity. Using field observations, models, and high-precision U–Th dating, we quantified changes in the structural complexity of coral reef frameworks over the past 2 decades. Structural complexity was stable at reef scales, yet bioerosion led to declines in small-scale microhabitat complexity with cascading effects on cryptic fauna.
Related subject area
Biogeophysics: Biota & Sediment Stability
Short-term response of benthic foraminifera to fine-sediment depositional events simulated in microcosm
Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging
Cross-shore gradients of physical disturbance in mangroves: implications for seedling establishment
A multifractal approach to characterize cumulative rainfall and tillage effects on soil surface micro-topography and to predict depression storage
Corentin Guilhermic, Maria Pia Nardelli, Aurélia Mouret, Damien Le Moigne, and Hélène Howa
Biogeosciences, 20, 3329–3351, https://doi.org/10.5194/bg-20-3329-2023, https://doi.org/10.5194/bg-20-3329-2023, 2023
Short summary
Short summary
Coastal seas experience sediment discharges whose intensity and frequency can strongly be affected by human activities and climate change. We analysed the response of benthic species in an experimental set-up. After the burial under a single thick layer of sediment or multiple thin layers at different times, the analysed species migrate rapidly towards the surface. A stronger effect of a single thick deposit on standing stocks and biodiversity is visible compared to frequent low-sediment inputs.
Marinka E. B. van Puijenbroek, Corjan Nolet, Alma V. de Groot, Juha M. Suomalainen, Michel J. P. M. Riksen, Frank Berendse, and Juul Limpens
Biogeosciences, 14, 5533–5549, https://doi.org/10.5194/bg-14-5533-2017, https://doi.org/10.5194/bg-14-5533-2017, 2017
Short summary
Short summary
Understanding the contribution of the vegetation and dune size to nebkha dune growth could improve model predictions on coastal dune development. We monitored a natural nebkha dune field with a drone with camera. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation. In our study area the growth of exposed dunes was restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply.
T. Balke, T. J. Bouma, P. M. J. Herman, E. M. Horstman, C. Sudtongkong, and E. L. Webb
Biogeosciences, 10, 5411–5419, https://doi.org/10.5194/bg-10-5411-2013, https://doi.org/10.5194/bg-10-5411-2013, 2013
E. Vidal Vázquez, J. G. V. Miranda, and J. Paz-Ferreiro
Biogeosciences, 7, 2989–3004, https://doi.org/10.5194/bg-7-2989-2010, https://doi.org/10.5194/bg-7-2989-2010, 2010
Cited articles
Allen, J. R. L.: Transport – hydrodynamics: shells, in: Palaeobiology: a synthesis, edited by: Briggs, D. E. G. and Crowther, P. R., Blackwell Scientific Publications, Oxford, 227–230, ISBN 063203118, 1990.
Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M., and Watkinson, A. R.: Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity, Proc. R. Soc. B, 276, 3019–3025, https://doi.org/10.1098/rspb.2009.0339, 2009.
Aronson, R. B. and Precht, W. F.: Stasis, Biological Disturbance, and Community Structure of a Holocene Coral Reef, Palepbiology, 23, 326–346, https://doi.org/10.1017/S0094837300019710, 1997.
Baldock, T. E., Golshani, A., Callaghan, D. P., Saunders, M. I., and Mumby, P. J.: Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs, Mar. Pollut. Bull., 83, 155–164, https://doi.org/10.1016/j.marpolbul.2014.03.058, 2014a.
Baldock, T. E., Karampour, H., Sleep, R., Vyltla, A., Albermani, F., Golshani, A., Callaghan, D. P., Roff, G., and Mumby, P. J.: Resilience of branching and massive corals to wave loading under sea level rise – A coupled computational fluid dynamics-structural analysis, Mar. Pollut. Bull., 86, 91–101, https://doi.org/10.1016/j.marpolbul.2014.07.038, 2014b.
Baldock, T. E., Birrien, F., Atkinson, A., Shimamoto, T., Wu, S., Callaghan, D. P., and Nielsen, P.: Morphological hysteresis in the evolution of beach profiles under sequences of wave climates – Part 1; Observations, Coast. Eng., 128, 92–105, https://doi.org/10.1016/j.coastaleng.2017.08.005, 2017.
Bartoń, K.: MuMIn: Multi-Model Inference, https://cran.r-project.org/package=MuMIn (last access: 23 October 2023), 2020.
Beetham, E. P. and Kench, P. S.: Wave energy gradients and shoreline change on Vabbinfaru platform, Maldives, Geomorphology, 209, 98–110, 2014.
Blair, T. C. and McPherson, J. G.: Grain-size and textural classification of coarse sedimentary particles, J. Sediment. Res., 69, 6–19, https://doi.org/10.2110/jsr.69.6, 1999.
Blanchon, P. and Jones, B.: Hurricane control on shelf-edge-reef architecture around Grand Cayman, Sedimentology, 44, 479–506, https://doi.org/10.1046/j.1365-3091.1997.d01-32.x, 1997.
Blanchon, P., Jones, B., and Kalbfleisch, W.: Anatomy of a fringing reef around Grand Cayman: storm rubble, not coral framework, J. Sediment. Res., 67, 1–16, https://doi.org/10.1306/D42684D7-2B26-11D7-8648000102C1865D, 1997.
Bowden-Kerby, A.: Low-tech coral reef restoration methods modeled after natural fragmentation processes, Bull. Mar. Sci., 69, 915–931, 2001.
Brooks, M. E., Kristensen, K., van Benthen, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., and Bolker, B. M.: glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling, R J., 9, 378–400, 2017.
Brown, B. E. and Dunne, D. P.: The environmental impact of coral mining on coral reefs in the Maldives, Environ. Conserv., 15, 159–166, 1988.
Bruno, J. F.: Fragmentation in Madracis mirabilis (Duchassaing and Michelotti): How common is size-specific fragment survivorship in corals?, J. Exp. Mar. Bio. Ecol., 230, 169–181, https://doi.org/10.1016/S0022-0981(98)00080-X, 1998.
Cheroske, A. G., Williams, S. L., and Carpenter, R. C.: Effects of physical and biological disturbances on algal turfs in Kaneohe Bay, Hawaii, J. Exp. Mar. Bio. Ecol., 248, 1–34, 2000.
Chong-Seng, K. M., Graham, N. A. J., and Pratchett, M. S.: Bottlenecks to coral recovery in the Seychelles, Coral Reefs, 33, 449–461, https://doi.org/10.1007/s00338-014-1137-2, 2014.
Clark, S. and Edwards, A. J.: Coral transplantation as an aid to reef rehabilitation: evaluation of a case study in the Maldive Islands, Coral. Reefs, 14, 201–213, 1995.
Clark, T. R., Roff, G., Zhao, J. xin, Feng, Y. xing, Done, T. J., McCook, L. J., and Pandolfi, J. M.: U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century, P. Natl. Acad. Sci. USA, 114, 10350–10355, https://doi.org/10.1073/pnas.1705351114, 2017.
Davies, P. J.: Reef growth, in: Perspectives on coral reefs, edited by: Barnes, D. J., Clouston, Manuka, 69–106, https://www.abebooks.com/first-edition/Perspectives-Coral-Reefs-Barnes-D-J/81606367/bd (last access: 23 October 2023) 1983.
Dollar, S. and Tribble, G. W.: Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii, Coral Reefs, 12, 223–233, https://doi.org/10.1016/B978-0-12-811963-1.00001-9, 1993.
Duce, S., Vila-Concejo, A., McCarroll, R. J., Yiu, B., Perris, L. A., and Webster, J. M.: Field measurements show rough fore reefs with spurs and grooves can dissipate more wave energy than the reef crest, Geomorphology, 413, 108365, https://doi.org/10.1016/j.geomorph.2022.108365, 2022.
Etienne, S. and Paris, R.: Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland), Geomorphology, 114, 55–70, https://doi.org/10.1016/j.geomorph.2009.02.008, 2010.
Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C. C., and Airoldi, L.: The effectiveness of coral reefs for coastal hazard risk reduction and adaptation, Nat. Commun., 5, 1–9, https://doi.org/10.1038/ncomms4794, 2014.
Fong, P. and Lirman, D.: Hurricanes Cause Population Expansion of the Branching Coral Acropora palmata (Scleractinia): Wound Healing and Growth Patterns of Asexual Recruits, Mar. Ecol., 16, 317–335, https://doi.org/10.1111/j.1439-0485.1995.tb00415.x, 1995.
Fox, H. E. and Caldwell, R. L.: Recovery from blast fishing on coral reefs: A tale of two scales, Ecol. Appl., 16, 1631–1635, https://doi.org/10.1890/1051-0761(2006)016[1631:Rfbfoc]2.0.Co;2, 2006.
Fox, H. E., Harris, J. L., Darling, E. S., Ahmadia, G. N., and Razak, T. B.: Rebuilding coral reefs: success (and failure) 16 years after low-cost, low-tech restoration, Restor. Ecol., 27, 862–869, https://doi.org/10.1111/rec.12935, 2019.
Gittings, S. R., Bright, T. J., and Hagman, D. K.: The M/V Wellwood and other large vessel groundings: coral reef damage and recovery, in: Proc Colloquium on Global Aspects of Coral Reefs: Health, Hazards and History, edited by: Ginsburg, R. N., Rosenstiel School of Marine and Atmospheric Science, Miami, 174–180, https://scholar.google.com/scholar_lookup?title=Proc+Colloquium+on+Global+Aspects+of+Coral+Reefs:+Health,+Hazards+and+History&author=SR+Gittings&author=TJ+Bright&author=DK+Hagman&author=RN+Ginsburg&publication_year=1994& (last access: 23 October 2023) 1994.
Graham, N. A. J., Wilson, S. K., Jennings, S., Polunin, N. V. C., Bijoux, J. P., and Robinson, J.: Dynamic fragility of oceanic coral reef ecosystems, P. Natl. Acad. Sci. USA, 103, 8425–8429, 2006.
Greenstein, B. J. and Pandolfi, J. M.: Taphonomic alteration of reef corals: Effects of reef environment and coral growth form II: The Florida Keys, Palaios, 18, 495–509, 2003.
Guihen, D., White, M., and Lundalv, T.: Boundary layer flow dynamics at a cold-water coral reef, J. Sea Res., 78, 36–44, https://doi.org/10.1016/j.seares.2012.12.007, 2013.
Hallock, P.: The role of nutrient availability in bioerosion: Consequences to carbonate buildups, Palaeogeogr. Palaeocl., 63, 275–291, https://doi.org/10.1016/0031-0182(88)90100-9, 1988.
Hardison, B. S. and Layzer, J. B.: Relations between complex hydraulics and the localized distribution of mussels in three regulated rivers, River Res. Appl., 17, 77–84, https://doi.org/10.1002/1099-1646(200101/02)17:1<77::aid-rrr604>3.0.co;2-s, 2001.
Harmelin-Vivien, M. L. and Laboute, P.: Catastrophic impact of hurricanes on atoll outer reef slopes in the Tuamotu (French Polynesia), Coral Reefs, 5, 55–62, https://doi.org/10.1007/BF00270353, 1986.
Harris, D. L., Vila-Concejo, A., Webster, J. M., and Power, H. E.: Spatial variations in wave transformation and sediment entrainment on a coral reef sand apron, Mar. Geol., 363, 220–229, https://doi.org/10.1016/j.margeo.2015.02.010, 2015.
Harris, D. L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., Webster, J. M., and Parravicini, V.: Coral reef structural complexity provides important coastal protection from waves under rising sea levels, Sci. Adv., 4, 1–8, https://doi.org/10.1126/sciadv.aao4350, 2018a.
Harris, D. L., Power, H. E., Kinsela, M. A., Webster, J. M., and Vila-Concejo, A.: Variability of depth-limited waves in coral reef surf zones, Estuar. Coast. Shelf Sci., 211, 36–44, https://doi.org/10.1016/j.ecss.2018.06.010, 2018b.
Hawkins, J. P. and Roberts, C. M.: Effects of Recreational Scuba Diving on Coral Reefs: Trampling on Reef-Flat Communities, J. Appl. Ecol., 30, 25–30, 1993.
Helmuth, B. and Sebens, K.: The influence of colony morphology and orientation to flow on particle capture by the scleractinian coral Agaricia agaricites (Linnaeus), J. Exp. Mar. Bio. Ecol., 165, 251–278, https://doi.org/10.1016/0022-0981(93)90109-2, 1993.
Heyward, A. J. and Collins, J. D.: Fragmentation in Montiporaramosa: the genet and ramet concept applied to a reef coral, Coral Reefs, 4, 35–40, 1985.
Highsmith, R. C.: Reproduction by fragmentation in corals, Mar. Ecol. Prog. Ser., 7, 207–226, https://doi.org/10.3354/meps007207, 1982.
Highsmith, R. C., Riggs, A. C., and D'Antonio, C. M.: Survival of Hurricane-Generated Coral Fragments and a Disturbance Model of Reef Calcification/Growth Rates, Oecologia, 46, 322–329, 1980.
Hoegh-Guldberg, O.: Climate change, coral bleaching and the future of the world's coral reefs, Mar. Freshw. Res., 50, 839–866, 1999.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E.: Coral reefs under rapid climate change and ocean acidification, Science, 318, 1737–1742, 2007.
Hubbard, D. K.: Hurricane-induced sediment transport in open-shelf tropical systems – an example from St.Croix, U.S. Virgin Islands, J. Sediment. Res., 62, 946–960, 1992.
Hughes, M. G. and Moseley, A. S.: Hydrokinematic regions within the swash zone, Cont. Shelf Res., 27, 2000–2013, https://doi.org/10.1016/j.csr.2007.04.005, 2007.
Hughes, T. P.: Off-reef transport of coral fragments at Lizard Island, Australia, Mar. Geol., 157, 1–6, 1999.
Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., Heron, S. F., Hoey, A. S., Hoogenboom, M. O., Liu, G., McWilliam, M. J., Pears, R. J., Pratchett, M. S., Skirving, W. J., Stella, J. S., and Torda, G.: Global warming transforms coral reef assemblages, Nature, 556, 492–496, https://doi.org/10.1038/s41586-018-0041-2, 2018.
Imamura, F., Goto, K., and Ohkubo, S.: A numerical model for the transport of a boulder by tsunami, J. Geophys. Res.-Ocean., 113, 1–12, https://doi.org/10.1029/2007JC004170, 2008.
Kain, C. L., Gomez, C., and Moghaddam, A. E.: Comment on “Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis)” by N. A. K. Nandasena, R. Paris and N. Tanaka, Mar. Geol., 281, 70–84, Mar. Geol., 319–322, 75–76, https://doi.org/10.1016/j.margeo.2011.08.008, 2012.
Kay, A. M. and Liddle, M. J.: Impact of human trampling in different zones of a coral reef flat, Environ. Manage., 13, 509–520, https://doi.org/10.1007/BF01867685, 1989.
Keen, T. R., Bentley, S. J., Chad Vaughan, W., and Blain, C. A.: The generation and preservation of multiple hurricane beds in the northern Gulf of Mexico, Mar. Geol., 210, 79–105, https://doi.org/10.1016/j.margeo.2004.05.022, 2004.
Kench, P. S.: A currents of removal approach for interpreting carbonate sedimentary processes, Mar. Geol., 145, 197–223, https://doi.org/10.1016/S0025-3227(97)00101-1, 1998a.
Kench, P. S.: Physical controls on development of lagoon sand deposits and lagoon infilling in an Indian Ocean atoll, J. Coast. Res., 14, 1014–1024, 1998b.
Kench, P. S., Brander, R. W., Parnell, K. E., and McLean, R. F.: Wave energy gradients across a Maldivian atoll: Implications for island geomorphology, Geomorphology, 81, 1–17, https://doi.org/10.1016/j.geomorph.2006.03.003, 2006.
Kench, P. S., Brander, R. W., Parnell, K. E., and O'Callaghan, J. M.: Seasonal variations in wave characteristics around a coral reef island, South Maalhosmadulu atoll, Maldives, Mar. Geol., 262, 116–129, https://doi.org/10.1016/j.margeo.2009.03.018, 2009.
Kenyon, T. M.: TMKenyon/rubblemobthresholds: Kenyon et al. 2023 Biogeosciences Publication (Version v1), Zenodo [code and data set], https://doi.org/10.5281/zenodo.10032448, 2023.
Kenyon, T. M., Doropoulos, C., Dove, S., Webb, G., Newman, S., Sim Wei Hung, C., Arzan, M., and Mumby, P. J.: The effects of rubble mobilisation on coral fragment survival, partial mortality and growth, J. Exp. Mar. Bio. Ecol., 533, 151467, https://doi.org/10.1016/j.jembe.2020.151467, 2020.
Kenyon, T. M., Doropoulos, C., Wolfe, K., Webb, G. E., Dove, S., Harris, D., and Mumby, P. J.: Coral rubble dynamics in the Anthropocene and implications for reef recovery, Limnol. Oceanogr., 68, 110–147, https://doi.org/10.1002/lno.12254, 2023.
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., and Sugi, M.: Tropical cyclones and climate change, Nat. Geosci., 3, 157–163, https://doi.org/10.1038/ngeo779, 2010.
Komar, P. D. and Miller, M. C.: The threshold of sediment movement under oscillatory water waves, J. Sediment. Petrol., 43, 1101–1110, 1973.
Lasagna, R., Albertelli, G., Giovannetti, E., Grondona, M., Milani, A., Morri, C., and Bianchi, C. N.: Status of Maldivian reefs eight years after the 1998 coral mass mortality, Chem. Ecol., 24, 67–72, 2008.
Lenth, R. V.: emmeans: Estimated Marginal Means, aka Least-Squares Means, R package version 1.8.7, https://CRAN.R-project.org/package=emmeans (last access: 23 October 2023), 2020.
Lewis, J. B.: Evidence from aerial photography of structural loss of coral reefs at Barbados, West Indies, Coral Reefs, 21, 49–56, https://doi.org/10.1007/s00338-001-0198-1, 2002.
Liu, E. T., Zhao, J. X., Feng, Y. X., Leonard, N. D., Clark, T. R., and Roff, G.: U-Th age distribution of coral fragments from multiple rubble ridges within the Frankland Islands, Great Barrier Reef: Implications for past storminess history, Quaternary Sci. Rev., 143, 51–68, https://doi.org/10.1016/j.quascirev.2016.05.006, 2016.
Luckhurst, B. E. and Luckhurst, K.: Analysis of the influence of substrate variables on coral reef fish communities, Mar. Biol., 49, 317–323, https://doi.org/10.1007/BF00455026, 1978.
Masucci, G. D., Biondi, P., and Reimer, J. D.: A Comparison of Size, Shape, and Fractal Diversity Between Coral Rubble Sampled From Natural and Artificial Coastlines Around Okinawa Island, Japan, Front. Mar. Sci., 8, 1–8, https://doi.org/10.3389/fmars.2021.703698, 2021.
Meehl, G. A., Tebaldi, C., Teng, H., and Peterson, T. C.: Current and future US weather extremes and El Niño, Geophys. Res. Lett., 34, 1–6, https://doi.org/10.1029/2007GL031027, 2007.
Monismith, S. G., Herdman, L. M. M., Ahmerkamp, S., and Hench, J. L.: Wave transformation and wave-driven flow across a steep coral reef, J. Phys. Oceanogr., 43, 1356–1379, https://doi.org/10.1175/JPO-D-12-0164.1, 2013.
Monismith, S. G., Rogers, J. S., Koweek, D., and Dunbar, R. B.: Frictional wave dissipation on a remarkably rough reef, Geophys. Res. Lett., 42, 4063–4071, https://doi.org/10.1002/2015GL063804, 2015.
Montaggioni, L. F.: History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors, Earth-Sci. Rev., 71, 1–75, https://doi.org/10.1016/j.earscirev.2005.01.002, 2005.
Morgan, K. and Kench, P.: Export of reef-derived sediments on Vabbinfaru reef platform, Maldives, in: Proc. 12th Int. Coral Reef Symp., 9–13 July 2012, Cairns, https://www.icrs2012.com/proceedings/manuscripts/ICRS2012_1A_3.pdf (last access: 23 October 2023), 2012.
Morgan, K. M. and Kench, P. S.: A detrital sediment budget of a Maldivian reef platform, Geomorphology, 222, 122–131, https://doi.org/10.1016/j.geomorph.2014.02.013, 2014a.
Morgan, K. M. and Kench, P. S.: A detrital sediment budget of a Maldivian reef platform, Geomorphology, 222, 122–131, https://doi.org/10.1016/j.geomorph.2014.02.013, 2014b.
Nandasena, N. A. K., Paris, R., and Tanaka, N.: Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis), Mar. Geol., 281, 70–84, https://doi.org/10.1016/j.margeo.2011.02.005, 2011.
Nielsen, P. and Callaghan, D. P.: Shear stress and sediment transport calculations for sheet flow under waves, Coast. Eng., 47, 347–354, https://doi.org/10.1016/S0378-3839(02)00141-2, 2003.
Nott, J.: Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: Determining the cause-tsunami or tropical cyclone, Mar. Geol., 141, 193–207, https://doi.org/10.1016/S0025-3227(97)00063-7, 1997.
Nott, J.: Waves, coastal boulder deposits and the importance of the pre-transport setting, Earth Planet. Sc. Lett., 210, 269–276, https://doi.org/10.1016/S0012-821X(03)00104-3, 2003.
Ormond, R. F. G. and Edwards, A.: Red Sea Fishes, in: Red Sea, edited by: Edwards, A. J. and Head, S. M., Pergamon Press, Oxford, UK, 252–287, 1987.
Ortiz, A. C. and Ashton, A. D.: Exploring shoreface dynamics and a mechanistic explanation for a morphodynamic depth of closure, J. Geophys. Res.-Earth, 121, 442–464, https://doi.org/10.1002/2015JF003699, 2016.
Pandolfi, J. M. and Greenstein, B. J.: Taphonomic alteration of reef corals: Effects of reef environment and coral growth form, I. The Great Barrier Reef, Palaios, 12, 27–42, https://doi.org/10.2307/3515292, 1997.
Pari, N., Peyrot-Clausade, M., and Hutchings, P. A.: Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) during 5 years of exposure, J. Exp. Mar. Bio. Ecol., 276, 109–127, https://doi.org/10.1016/S0022-0981(02)00243-5, 2002.
Perry, C. T. and Morgan, K. M.: Post-bleaching coral community change on southern Maldivian reefs: is there potential for rapid recovery?, Coral Reefs, 36, 1189–1194, https://doi.org/10.1007/s00338-017-1610-9, 2017.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team: nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-162, https://cran.r-project.org/package=nlme (last access: 23 October 2023), 2019.
Prosper, A. L. O.: Population Dynamics of Hurricane-Generated Fragments of Elkhorn Coral Acropora palmata, Lamarck, 1816, PhD Thesis, University of Puerto Rico, 74 pp., https://www.aoml.noaa.gov/general/lib/CREWS/Cleo/PuertoRico/prpdfs/ortiz-population.pdf (last access: 23 October 2023), 2005.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 23 October 2023), 2020.
Rasheed, S., Warder, S. C., Plancherel, Y., and Piggott, M. D.: Response of tidal flow regime and sediment transport in North Male' Atoll, Maldives to coastal modification and sea level rise, Ocean Sci., 17, 319–334, https://doi.org/10.5194/os-17-319-2021, 2021.
Rasser, M. W. and Riegl, B.: Holocene coral reef rubble and its binding agents, Coral Reefs, 21, 57–72, https://doi.org/10.1007/s00338-001-0206-5, 2002.
Roelfsema, C. M., Kovacs, E. M., Ortiz, J. C., Callaghan, D. P., Hock, K., Mongin, M., Johansen, K., Mumby, P. J., Wettle, M., Ronan, M., Lundgren, P., Kennedy, E. V., and Phinn, S. R.: Habitat maps to enhance monitoring and management of the Great Barrier Reef, Coral Reefs, 39, 1039–1054, https://doi.org/10.1007/s00338-020-01929-3, 2020.
Rogers, A., Blanchard, J. L., and Mumby, P. J.: Fisheries productivity under progressive coral reef degradation, J. Appl. Ecol., 55, 1041–1049, https://doi.org/10.1111/1365-2664.13051, 2018.
Rogers, J., Monismith, S. G., Koweek, D. A., and Dunbar, R. B.: Wave dynamics of a Pacific Atoll with high frictional effects, J. Geophys. Res.-Ocean., 121, 476–501, https://doi.org/10.1002/2015JC011170.Received, 2015.
Salles, T., Ding, X., and Brocard, G.: pyBadlands: A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time, PLoS One, 13, 1–24, https://doi.org/10.1371/journal.pone.0195557, 2018.
Saunders, M. I., Doropoulos, C., Bayraktarov, E., Babcock, R. C., Gorman, D., Eger, A. M., Vozzo, M. L., Gillies, C. L., Vanderklift, M. A., Steven, A. D. L., Bustamante, R. H., and Silliman, B. R.: Bright Spots in Coastal Marine Ecosystem Restoration, Curr. Biol., 30, R1500–R1510, https://doi.org/10.1016/j.cub.2020.10.056, 2020.
Scoffin, T. P.: Taphonomy of coral reefs: a review, Coral Reefs, 11, 57–77, 1992.
Scoffin, T. P.: The geological effects of hurricanes on coral reefs and the interpretation of storm deposits, Coral Reefs, 12, 203– 221, 1993.
Scoffin, T. P. and McLean, R. F.: Exposed limestones of the northern province of the Great Barrier Reef, Phil. Trans. R. Soc. Lond. A, 291, 119–138, 1978.
Sebens, K. P. and Johnson, A. S.: Effects of water movement on prey capture and distribution of reef corals, Hydrobiologia, 216, 247–248, 1991.
Shannon, A. M., Power, H. E., Webster, J. M., and Vila-Concejo, A.: Evolution of Coral Rubble Deposits on a Reef Platform as Detected by Remote Sensing, Remote Sens., 5, 1–18, https://doi.org/10.3390/rs5010001, 2013.
Smith, L. D. and Hughes, T. P.: An experimental assessment of survival, re-attachment and fecundity of coral fragments, J. Exp. Mar. Bio. Ecol., 235, 147–164, 1999.
Soulsby, R. L.: Sand Transport in Oscillatory Flow: Simplified calculation of wave orbital velocities, HR Wallingford Ltd, Oxfordshire, UK, https://eprints.hrwallingford.com/588/1/TR155.pdf (last access: 23 October 2023), 2006.
Sousa, W. P.: Experimental Investigations of Disturbance and Ecological Succession in a Rocky Intertidal Algal Community, Ecol. Monogr., 49, 227–254, 1979.
Storlazzi, C. D., Brown, E. K., Field, M. E., Rodgers, K., and Jokiel, P. L.: A model for wave control on coral breakage and species distribution in the Hawaiian Islands, Coral Reefs, 24, 43–55, https://doi.org/10.1007/s00338-004-0430-x, 2005.
Suren, A. M. and Duncan, M. J.: Rolling stones and mosses: Effect of substrate stability on bryophyte communities in streams, J. North Am. Benthol. Soc., 18, 457–467, https://doi.org/10.2307/1468378, 1999.
Tajima, Y. and Seto, S.: Laboratory Study On Transport Of Coral Gravals Under Forward-Leaning Nearshore Waves, Coast. Dynam., 164, 966–975, 2017.
Thornborough, K. J.: Rubble-dominated reef flat processes and development: evidence from One Tree Reef, Southern Great Barrier Reef, PhD Thesis, The University of Sydney, 121 pp., https://doi.org/10.13140/RG.2.1.2556.0487, 2012.
Townsend, C. R., Scarsbrook, M. R., and Dolédec, S.: The intermediate disturbance hypothesis, refugia, and biodiversity in streams, Limnol. Oceanogr., 42, 938–949, https://doi.org/10.4319/lo.1997.42.5.0938, 1997.
Tribollet, A., Decherf, G., Hutchings, P. A., and Peyrot-Clausade, M.: Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): Importance of microborers, Coral Reefs, 21, 424–432, https://doi.org/10.1007/s00338-002-0267-0, 2002.
Tunnicliffe, V.: Breakage and propagation of the stony coral Acropora cervicornis, Proc. Natl. Acad. Sci., 78, 2427–2431, https://doi.org/10.1073/pnas.78.4.2427, 1981.
Viehman, T. S.: Coral Decline and Reef Habitat Loss in the Caribbean: Modeling Abiotic Limitations on Coral Populations and Communities, Dissertation, Duke University, https://hdl.handle.net/10161/14407 (last access: 23 October 2023) 2017.
Viehman, T. S., Hench, J. L., Griffin, S. P., Malhotra, A., Egan, K., and Halpin, P. N.: Understanding differential patterns in coral reef recovery: chronic hydrodynamic disturbance as a limiting mechanism for coral colonization, Mar. Ecol. Prog. Ser., 605, 135–150, 2018.
Wolfe, K., Kenyon, T. M., Desbiens, A., de la Motte, K., and Mumby, P. J.: Hierarchical drivers of cryptic biodiversity on coral reefs, Ecol. Monogr., 93, 1–27, https://doi.org/10.1002/ecm.1586, 2023.
Woodley, J. D., Chornesky, E. A., Clifford, P. A., Jackson, J. B. C., Kaufman, L. S., Knowlton, N., Lang, J. C., Pearson, M. P., Porter, J. W., Rooney, M. C., Rylaarsdam, K. W., Tunnicliffe, V. J., Wahle, C. M., Wulff, J. L., Curtis, A. S. G., and Dallmeyer, B. P.: Hurricane Allen's impact on Jamaican coral reefs, Science, 214, 749–755, 1981a.
Woodley, J. D., Chornesky, E. A., Clifford, P. A., Jackson, J. B. C., Kaufman, L. S., Knowlton, N., Lang, J. C., Pearson, M. P., Porter, J. W., Rooney, M. C., Rylaarsdam, K. W., Tunnicliffe, V. J., Wahle, C. M., Wulff, J. L., Curtis, A. S. G., Dallmeyer, M. D., Jupp, B. P., Koehl, M. A. R., Neigel, J., and Sides, E. M.: Hurricane Allen's impact on Jamaican coral reefs, Science, 214, 749–755, https://doi.org/10.1126/science.214.4522.749, 1981b.
Young, I. R.: Seasonal Variability of the Global Ocean Wind and Wave Climate, Int. J. Clim., 19, 931–950, https://doi.org/10.1002/(SICI)1097-0088(199907)19, 1999.
Yu, K., Zhao, J., Roff, G., Lybolt, M., Feng, Y., Clark, T., and Li, S.: High-precision U-series ages of transported coral blocks on Heron Reef (southern Great Barrier Reef) and storm activity during the past century, Palaeogeogr. Palaeocl., 337–338, 23–36, https://doi.org/10.1016/j.palaeo.2012.03.023, 2012.
Zahir, H., Quinn, N., and Cargilia, N.: Assessment of Maldivian Coral Reefs in 2009 after Natural Disasters, Male', Marine Research Centre of the Ministry of Fisheries Agriculture and Marine Resources Male' http://www.mrc.gov.mv/assets/Uploads/October-2009-Assessment-of-Maldivian-Coral-Reefs-in-2009 (last access: 23 October 2023), 2009.
Short summary
The movement of rubble on coral reefs can lead to persistent unstable rubble beds that hinder reef recovery. To identify where such rubble beds are, we need to know the minimum velocity that will move rubble. We found that loose rubble had a 50 % chance of being moved when near-bed wave orbital velocities reached ~0.3 m s−1; rubble moved more if pieces were small and had no branches. Rubble beds that experience frequent movement would be good candidates for rubble stabilisation interventions.
The movement of rubble on coral reefs can lead to persistent unstable rubble beds that hinder...
Altmetrics
Final-revised paper
Preprint