Articles | Volume 22, issue 5
https://doi.org/10.5194/bg-22-1203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of pH/pCO2 fluctuations on photosynthesis and fatty acid composition of two marine diatoms, with reference to consequences of coastal acidification
Yu Shang
Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China
Jingmin Qiu
Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China
Yuxi Weng
Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China
Xin Wang
Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China
Di Zhang
School of Ocean, Yantai University, Yantai, 264000, China
Yuwei Zhou
Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China
Juntian Xu
Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China
Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
Futian Li
CORRESPONDING AUTHOR
Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China
Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
Related authors
No articles found.
Yuming Rao, Na Wang, He Li, Jiazhen Sun, Xiaowen Jiang, Di Zhang, Liming Qu, Qianqian Fu, Xuyang Wang, Cong Zhou, Zichao Deng, Yang Tian, Xiangqi Yi, Ruiping Huang, Guang Gao, Xin Lin, and Kunshan Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-5218, https://doi.org/10.5194/egusphere-2025-5218, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In a mesocosm experiment conducted in the highly eutrophic coastal water of southern East China Sea, we found that the impacts of ocean acidification (OA) on phytoplankton diversity and primary production depend on status of eutrophication or nutrient availability, with OA likely to reduce the biodiversity and primary production in the phytoplankton community after the nutrients depletion. In future oceans, OA and nutrients depletion may synergistically reduce the biodiversity in coastal waters.
Hangxiao Li, Tianpeng Xu, Jing Ma, Futian Li, and Juntian Xu
Biogeosciences, 18, 1439–1449, https://doi.org/10.5194/bg-18-1439-2021, https://doi.org/10.5194/bg-18-1439-2021, 2021
Short summary
Short summary
Few studies have investigated effects of ocean acidification and seasonal changes in temperature and day length on marine diatoms. We cultured a marine diatom under two CO2 levels and three combinations of temperature and day length, simulating different seasons, to investigate combined effects of these factors. Acidification had contrasting effects under different combinations, indicating that the future ocean may show different effects on diatoms in different clusters of factors.
Cited articles
Abreu, I.N., Aksmann, A., Bajhaiya, A.K., Benlloch, R., Giordano, M., Pokora, W., Selstam, E., and Moritz, T.: Changes in lipid and carotenoid metabolism in Chlamydomonas reinhardtii during induction of CO2-concentrating mechanism: Cellular response to low CO2 stress, Algal Res., 52, 102099, https://doi.org/10.1016/j.algal.2020.102099, 2020.
Anderson, D. H. and Robinson, R. J.: Rapid electrometric determination of alkalinity of sea water using glass electrode, Ind. Eng. Chem., 18, 767–769, https://doi.org/10.1021/i560160a011, 1946.
Armbrust, E. V.: The life of diatoms in the world's oceans, Nature, 459, 185–192, https://doi.org/10.1038/nature08057 2009.
Boelen, P., van Dijk, R., Sinninghe Damsté, J. S. Rijpstra, W. I. C., and Buma, A. G. J.: On the potential application of polar and temperate marine microalgae for EPA and DHA production, AMB Express, 3, 26, https://doi.org/10.1186/2191-0855-3-26, 2013
Brett, M. and Müller-Navarra, D.: The role of highly unsaturated fatty acids in aquatic foodweb processes, Freshwater Biol., 38, 483–499, https://doi.org/10.1046/j.1365-2427.1997.00220.x, 1997.
Brzezinski, M. A. and Nelson, D. M.: The annual silica cycle in the Sargasso Sea near Bermuda, Deep-Sea Res. Pt. I, 42, 1215–1237, https://doi.org/10.1016/0967-0637(95)93592-3, 1995.
Budge, S. M., Devred, E., Forget, M.-H., Stuart, V., Trzcinski, M. K., Sathyendranath, S., and Platt, T.: Estimating concentrations of essential omega-3 fatty acids in the ocean: Supply and demand, ICES J. Mar. Sci., 71, 1885–1893, https://doi.org/10.1093/icesjms/fsu003, 2014.
Carstensen, J. and Duarte, C. M.: Drivers of pH variability in coastal ecosystems, Environ. Sci. Technol., 53, 4020–4029, https://doi.org/10.1021/acs.est.8b03655, 2019.
Chrachri, A., Hopkinson, B. M., Flynn, K., Brownlee, C., and Wheeler, G. L.: Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells, Nat. Commun., 9, 74, https://doi.org/10.1038/s41467-017-02426-y, 2018.
Dickson, A. G.: Standard potential of the reaction: AgCl(s)+1/2H2(g)=Ag(s)+HCl(aq), and the standard acidity constant of the ion HSO in synthetic seawater from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The impacts of ocean acidification on marine ecosystems and reliant human communities, Annu. Rev. Env. Resour., 45, 83–112, https://doi.org/10.1146/annurev-environ-012320-083019, 2020.
Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., and McCulloch, M.: Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH, Estuar. Coast., 36, 221–236, https://doi.org/10.1007/s12237-013-9594-3, 2013.
Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J., Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at the exterior surface of plankton with ocean acidification, Nat. Clim. Change, 2, 510–513, https://doi.org/10.1038/nclimate1489, 2012.
Gao, K. and Campbell, D. A.: Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review, Funct. Plant Biol., 41, 449–459, https://doi.org/10.1071/fp13247, 2014.
García-Ibáñez, M. I., Guallart, E. F., Lucas, A., Pascual, J., Gasol, J. M., Marrasé, C., Calvo, E., and Pelejero, C.: Two new coastal time-series of seawater carbonate system variables in the NW Mediterranean Sea: Rates and mechanisms controlling pH changes, Front. Mar. Sci., 11, 1348133, https://doi.org/10.3389/fmars.2024.1348133, 2024.
Gattuso, J.-P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Pörtner, H.-O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U. R., Treyer, S., and Turley, C.: Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios, Science, 349, aac4722, https://doi.org/10.1126/science.aac4722, 2015.
Gordillo, F. J. L., Jiménez, C., Figueroa, F. L., and Niell, X.: Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira), J. Appl. Phycol., 10, 461–469, https://doi.org/10.1023/A:1008090402847, 1998.
Gordillo, F. J. L., Aguilera, J., Wiencke, C., and Jiménez, C.: Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation, J. Plant Physiol., 173, 41–50, https://doi.org/10.1016/j.jplph.2014.09.008, 2015.
Guillard, R. R. L. and Ryther, J. H.: Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea (Cleve) Gran, Can. J. Microbiol., 8, 229–239, https://doi.org/10.1139/m62-029, 1962.
Hancock, A. M., King, C. K., Stark, J. S., McMinn, A., and Davidson, A. T.: Effects of ocean acidification on Antarctic marine organisms: A meta-analysis, Ecol. Evol., 10, 4495–4514, https://doi.org/10.1002/ece3.6205, 2020.
Hansen, P. J.: Effect of high pH on the growth and survival of marine phytoplankton: Implications for species succession, Aquat. Microb. Ecol., 28, 279–288, https://doi.org/10.3354/ame028279, 2002.
Hinga, K. R.: Effects of pH on coastal marine phytoplankton, Mar. Ecol. Prog. Ser., 238, 281–300, https://doi.org/10.3354/meps238281, 2002.
Hixson, S. M. and Arts, M. T.: Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton, Glob. Change Biol., 22, 2744–2755, https://doi.org/10.1111/gcb.13295, 2016.
Ishida, Y., Hiragushi, N., Kitaguchi, H., Mitsutani, A., Nagai, S., and Yoshimura, M.: A highly CO2-tolerant diatom, Thalassiosira weissflogii H1, enriched from coastal sea, and its fatty acid composition, Fisheries Sci., 66, 655–659, https://doi.org/10.1046/j.1444-2906.2000.00105.x, 2000.
Jin, P., Liang, Z., Lu, H., Pan, J., Li, P., Huang, Q., Guo, Y., Zhong, J., Li, F., Wan, J., Overmans, S., and Xia, J.: Lipid remodeling revels the adaptations of a marine diatom to ocean acidification, Front. Microbiol., 12, 748445, https://doi.org/10.3389/fmicb.2021.748445, 2021.
Kainz, M., Arts, M. T., and Mazumder, A.: Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels, Limnol. Oceanogr., 49, 1784–1793, https://doi.org/10.4319/lo.2004.49.5.1784, 2004.
Kapsenberg, L. and Cyronak, T.: Ocean acidification refugia in variable environments, Glob. Change Biol., 25, 3201–3214, https://doi.org/10.1111/gcb.14730, 2019.
Key, T., McCarthy, A., Campbell, D. A., Six, C., Roy, S., and Finkel, Z. V.: Cell size trade-offs govern light exploitation strategies in marine phytoplankton, Environ. Microbiol., 12, 95–104, https://doi.org/10.1111/j.1462-2920.2009.02046.x, 2010.
King, A. L., Jenkins, B. D., Wallace, J. R., Liu, Y., Wikfors, G. H., Milke, L. M., and Meseck, S. L.: Effects of CO2 on growth rate, C: N: P, and fatty acid composition of seven marine phytoplankton species, Mar. Ecol. Prog. Ser., 537, 59–69, https://doi.org/10.3354/meps11458, 2015.
Lee, J.-Y., Marotzke, J., Bala, G., Cao., L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future global climate: Scenario-based projections and near-term information, in: Climate Change 2021: The physical Science Basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leizell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge and New York, 553–672, https://doi.org/10.1017/9781009157896.006, 2021.
Leu, E., Daase, M., Schulz, K. G., Stuhr, A., and Riebesell, U.: Effect of ocean acidification on the fatty acid composition of a natural plankton community, Biogeosciences, 10, 1143–1153, https://doi.org/10.5194/bg-10-1143-2013, 2013.
Li, F., Wu, Y., Hutchins, D. A., Fu, F., and Gao, K.: Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations, Biogeosciences, 13, 6247–6259, https://doi.org/10.5194/bg-13-6247-2016, 2016.
Li, F., Fan, J., Hu, L., Beardall, J., and Xu, J.: Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization, ICES J. Mar. Sci., 76, 1850–1859, https://doi.org/10.1093/icesjms/fsz028, 2019.
Li, F., Xu, J., Beardall, J., and Gao, K.: Diurnally fluctuating pCO2 enhances growth of a coastal strain of Emiliania huxleyi under future-projected ocean acidification conditions, ICES J. Mar. Sci., 78, 1301–1310, https://doi.org/10.1093/icesjms/fsab036, 2021.
Maulucci, G., Cohen, O., Daniel, B., Sansone, A., Petropoulou, P.I., Filou, S., Spyridonidis, A., Pani, G., Spirito, M. De, Chatgilialoglu, C., Ferreri, C., Kypreos, K. E., and Sasson, S.: Fatty acid-related modulations of membrane fluidity in cells: detection and implications, Free Radical Res., 50, 40–50, https://doi.org/10.1080/10715762.2016.1231403, 2016.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Raven, J. R., Gobler, C. J., and Hansen, P. J.: Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms, Harmful Algae, 91, 101594, https://doi.org/10.1016/j.hal.2019.03.012, 2020.
Reinfelder, J. R., Kraepiel, A. M. L., and Morel, F. M. M.: Unicellular C4 photosynthesis in a marine diatom, Nature, 407, 996–999, https://doi.org/10.1038/35039612, 2000.
Rossoll, D., Bermúdez, R., Hauss, H., Schulz, K. G., Riebesell, U., Sommer, U., and Winder, M.: Ocean acidification-induced food quality deterioration constrains trophic transfer, PLoS ONE, 7, e34737, https://doi.org/10.1371/journal.pone.0034737, 2012.
Schaum, C. E. and Collins, S.: Plasticity predictes evolution in a marine alga, P. R. Soc. B., 281, 20141486, https://doi.org/10.1098/rspb.2014.1486, 2014.
Schaum, C. E., Rost, B., and Collins, S.: Environmental stability affects phenotypic evolution in a globally distributed marine picoplankton, ISME J., 10, 75–84, https://doi.org/10.1038/ismej.2015.102, 2016.
Schwenk, D., Seppala, J., Spilling, K., Virkki, A., Tamminen, T., Oksman-Caldentey, K. M., and Rischer, H.: Lipid content in 19 brackish and marine microalgae: influence of growth phase, salinity and temperature, Aquat. Ecol., 47, 415–424, https://doi.org/10.1007/s10452-013-9454-z, 2013.
Shang, Y., He, J., Qiu, J., Hu, S., Wang, X., Zhang, T., Wang W., Yuan, X., Xu, J., and Li, F.: The tolerance of two marine diatoms to diurnal pH fluctuation under dynamic light condition and ocean acidification scenario, Mar. Environ. Res., 196, 106425, https://doi.org/10.1016/j.marenvres.2024.106425, 2024a.
Shang, Y., Qiu, J., Weng, Y., Wang, X., Zhang, D., Zhou, Y., Xu, J., and Li, F.: Effects of pH/pCO2 fluctuation on photosynthesis and fatty acid composition of two marine diatoms, Zenodo [data set], https://doi.org/10.5281/zenodo.13142180, 2024b.
Strzepek, R. F. and Harrison, P. J.: Photosynthetic architecture differs in coastal and oceanic diatoms, Nature, 431, 689–692, https://doi.org/10.1038/nature02954, 2004.
Sunda, W. G., Price, N. M., and Morel, F. M. M.: Trace metal ion buffers and their use in culture studies, in : Algal Culturing Techniques, edited by: Aderson, R. A., Elsevier Academic Press, Burlington, 35–63, ISBN 0120884267, 2005.
Taraldsvik, M. and Myklestad, S.: The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum, Eur. J. Phycol., 35, 189–194, https://doi.org/10.1080/09670260010001735781, 2000.
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence of diatom diversity on the ocean biological carbon pump, Nat. Geosci., 11, 27–37, https://doi.org/10.1038/s41561-017-0028-x, 2018.
Wahl, M., Covachã, S.S., Saderne, V., Hiebenthal, C., Müller, J.D., Pansch, C., and Sawll, Y.: Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations, Limnol. Oceanogr., 63, 3–21, https://doi.org/10.1002/lno.10608, 2018.
Wang, T., Tong, S., Liu, N., Li, F., Wells, M. L., and Gao, K.: The fatty acid content of plankton is changing in subtropical coastal waters as a result of OA: Results from a mesocosm study, Mar. Environ. Res., 132, 51–62, https://doi.org/10.1016/j.marenvres.2017.10.010, 2017.
Young, B. P., Shin, J. J. H., Orij, R., Chao, J. T., Li, S. C., Guan, X. L., Khong, A., Jan, E., Wenk, M. R., Prinz, W. A., and Smits, G. J.: Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism, Science, 329, 1085–1088, https://doi.org/10.1126/science.1191026, 2010.
Zheng, Y., Giordano, M., and Gao, K.: Photochemical responses of the diatom Skeletonema costatum grown under elevated CO2 concentrations to short-term changes in pH, Aquat. Biol., 23, 109–118, https://doi.org/10.3354/ab00619, 2015.
Short summary
Research on the influences of dynamic pH on the marine ecosystem is still in its infancy. We manipulated the culturing pH to simulate pH fluctuation and found lower pH could increase eicosapentaenoic acid and docosahexaenoic acid production with unaltered growth and photosynthesis in two marine diatoms. It is important to consider pH variation for more accurate predictions regarding the consequences of acidification in coastal waters.
Research on the influences of dynamic pH on the marine ecosystem is still in its infancy. We...
Altmetrics
Final-revised paper
Preprint