Articles | Volume 22, issue 1
https://doi.org/10.5194/bg-22-181-2025
https://doi.org/10.5194/bg-22-181-2025
Research article
 | 
10 Jan 2025
Research article |  | 10 Jan 2025

Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield

Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson

Related authors

Ozone pollution may limit the benefits of irrigation to wheat productivity in India
Gabriella Everett, Øivind Hodnebrog, Madhoolika Agrawal, Durgesh Singh Yadav, Connie O'Neill, Chubamenla Jamir, Jo Cook, Pritha Pande, Sam Bland, and Lisa Emberson
Biogeosciences, 22, 4203–4219, https://doi.org/10.5194/bg-22-4203-2025,https://doi.org/10.5194/bg-22-4203-2025, 2025
Short summary
Modelling ozone-induced changes in wheat amino acids and protein quality using a process-based crop model
Jo Cook, Durgesh Singh Yadav, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, and Lisa Emberson
Biogeosciences, 22, 1035–1056, https://doi.org/10.5194/bg-22-1035-2025,https://doi.org/10.5194/bg-22-1035-2025, 2025
Short summary
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024,https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary

Cited articles

Amthor, J. S., Bar-Even, A., Hanson, A. D., Millar, A. H., Stitt, M., Sweetlove, L. J., and Tyerman, S. D.: Engineering strategies to boost crop productivity by cutting respiratory carbon loss, Plant Cell, 31, 297–314, https://doi.org/10.1105/tpc.18.00743, 2019. 
Betzelberger, A. M., Gillespie, K. M., McGrath, J. M., Koester, R. P., Nelson, R. L., and Ainsworth, E. A.: Ozone exposure response for U.S. soybean cultivars: Linear reductions in photosynthetic potential, biomass, and yield, Plant Physiology, American Society of Plant Biologists, 160, 1827–1839, https://doi.org/10.1104/pp.112.205591, 2012. 
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006. 
Biswas, D. K., Xu, H., Li, Y. G., Sun, J. Z., Wang, X. Z., Han, X. G., and Jiang, G. M.: Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives, J. Exp. Bot., 59, 951–963, https://doi.org/10.1093/jxb/ern022, 2008. 
Bland, S.: SEI-DO3SE/pyDO3SE-open: V4.39.11 (v4.39.11), Zenodo [code], https://doi.org/10.5281/zenodo.11620482, 2024. 
Download
Short summary
The DO3SE-Crop model extends the DO3SE to simulate ozone's impact on crops with modules for ozone uptake, damage, and crop growth from JULES-crop. It's versatile, suits China's varied agriculture, and improves yield predictions under ozone stress. It is essential for policy, water management, and climate response, and it integrates into Earth system models for a comprehensive understanding of agriculture's interaction with global systems.
Share
Altmetrics
Final-revised paper
Preprint