Articles | Volume 22, issue 9
https://doi.org/10.5194/bg-22-2201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-2201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cold-water coral mounds are effective carbon sinks in the western Mediterranean Sea
Luis Greiffenhagen
CORRESPONDING AUTHOR
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Jürgen Titschack
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Claudia Wienberg
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Haozhuang Wang
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
Dierk Hebbeln
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Faculty of Geosciences, University of Bremen, Bremen, Germany
Related authors
No articles found.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Ulrike Hanz, Claudia Wienberg, Dierk Hebbeln, Gerard Duineveld, Marc Lavaleye, Katriina Juva, Wolf-Christian Dullo, André Freiwald, Leonardo Tamborrino, Gert-Jan Reichart, Sascha Flögel, and Furu Mienis
Biogeosciences, 16, 4337–4356, https://doi.org/10.5194/bg-16-4337-2019, https://doi.org/10.5194/bg-16-4337-2019, 2019
Short summary
Short summary
Along the Namibian and Angolan margins, low oxygen conditions do not meet environmental ranges for cold–water corals and hence are expected to be unsuitable habitats. Environmental conditions show that tidal movements deliver water with more oxygen and high–quality organic matter, suggesting that corals compensate unfavorable conditions with availability of food. With the expected expansion of oxygen minimum zones in the future, this study provides an example how ecosystems cope with extremes.
Martin Bartels, Jürgen Titschack, Kirsten Fahl, Rüdiger Stein, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, and Dierk Hebbeln
Clim. Past, 13, 1717–1749, https://doi.org/10.5194/cp-13-1717-2017, https://doi.org/10.5194/cp-13-1717-2017, 2017
Short summary
Short summary
Multi-proxy analyses (i.a., benthic foraminiferal assemblages and sedimentary properties) of a marine record from Woodfjorden at the northern Svalbard margin (Norwegian Arctic) illustrate a significant contribution of relatively warm Atlantic water to the destabilization of tidewater glaciers, especially during the deglaciation and early Holocene (until ~ 7800 years ago), whereas its influence on glacier activity has been fading during the last 2 millennia, enabling glacier readvances.
Max Wisshak, Jürgen Titschack, Wolf-Achim Kahl, and Peter Girod
Foss. Rec., 20, 173–199, https://doi.org/10.5194/fr-20-173-2017, https://doi.org/10.5194/fr-20-173-2017, 2017
Short summary
Short summary
The ongoing technical revolution in non-destructive 3-D visualisation via micro-computed tomography (micro-CT) finds a valuable application in the studies of bioerosion trace fossils, since their three-dimensional architecture lies hidden within hard substrates. Selected examples of such cases are illustrated by reference to bioerosion trace fossils preserved in Late Cretaceous belemnite guards from the European Chalk Province, including the description of two new trace fossil ichnospecies.
Quentin Dubois-Dauphin, Paolo Montagna, Giuseppe Siani, Eric Douville, Claudia Wienberg, Dierk Hebbeln, Zhifei Liu, Nejib Kallel, Arnaud Dapoigny, Marie Revel, Edwige Pons-Branchu, Marco Taviani, and Christophe Colin
Clim. Past, 13, 17–37, https://doi.org/10.5194/cp-13-17-2017, https://doi.org/10.5194/cp-13-17-2017, 2017
Claudia Färber, Jürgen Titschack, Christine Hanna Lydia Schönberg, Karsten Ehrig, Karin Boos, Daniel Baum, Bernhard Illerhaus, Ulla Asgaard, Richard Granville Bromley, André Freiwald, and Max Wisshak
Biogeosciences, 13, 3461–3474, https://doi.org/10.5194/bg-13-3461-2016, https://doi.org/10.5194/bg-13-3461-2016, 2016
Short summary
Short summary
In this study we present results from the first long-term bioerosion experiment (1–14 years of exposure) outside the tropical realm. A novel micro-CT approach was used to visualise and to quantify the development of macrobioerosion traces. After 14 years, 30 % of the original substrate volume was excavated chiefly by sponges. High spatio-temporal variability prohibited clear conclusions about the onset of macrobioerosion equilibrium conditions, calling for further long-term experiments.
D. Hebbeln, C. Wienberg, P. Wintersteller, A. Freiwald, M. Becker, L. Beuck, C. Dullo, G. P. Eberli, S. Glogowski, L. Matos, N. Forster, H. Reyes-Bonilla, and M. Taviani
Biogeosciences, 11, 1799–1815, https://doi.org/10.5194/bg-11-1799-2014, https://doi.org/10.5194/bg-11-1799-2014, 2014
C. Wienberg, P. Wintersteller, L. Beuck, and D. Hebbeln
Biogeosciences, 10, 3421–3443, https://doi.org/10.5194/bg-10-3421-2013, https://doi.org/10.5194/bg-10-3421-2013, 2013
T. Morato, K. Ø. Kvile, G. H. Taranto, F. Tempera, B. E. Narayanaswamy, D. Hebbeln, G. M. Menezes, C. Wienberg, R. S. Santos, and T. J. Pitcher
Biogeosciences, 10, 3039–3054, https://doi.org/10.5194/bg-10-3039-2013, https://doi.org/10.5194/bg-10-3039-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Evolution of System Earth
Technical note: Low meteorological influence found in 2019 Amazonia fires
Understanding tropical forest abiotic response to hurricanes using experimental manipulations, field observations, and satellite data
Towards a global understanding of vegetation–climate dynamics at multiple timescales
Evaluating and improving the Community Land Model's sensitivity to land cover
The extant shore platform stromatolite (SPS) facies association: a glimpse into the Archean?
Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil
Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland
Global assessment of Vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies (GIMMS) version 3 products
Seasonal variation in grass water content estimated from proximal sensing and MODIS time series in a Mediterranean Fluxnet site
A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions
Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region
High-latitude cooling associated with landscape changes from North American boreal forest fires
Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for economically-optimal nitrogen rates
Tephrostratigraphy and tephrochronology of lakes Ohrid and Prespa, Balkans
Douglas I. Kelley, Chantelle Burton, Chris Huntingford, Megan A. J. Brown, Rhys Whitley, and Ning Dong
Biogeosciences, 18, 787–804, https://doi.org/10.5194/bg-18-787-2021, https://doi.org/10.5194/bg-18-787-2021, 2021
Short summary
Short summary
Initial evidence suggests human ignitions or landscape changes caused most Amazon fires during August 2019. However, confirmation is needed that meteorological conditions did not have a substantial role. Assessing the influence of historical weather on burning in an uncertainty framework, we find that 2019 meteorological conditions alone should have resulted in much less fire than observed. We conclude socio-economic factors likely had a strong role in the high recorded 2019 fire activity.
Ashley E. Van Beusekom, Grizelle González, Sarah Stankavich, Jess K. Zimmerman, and Alonso Ramírez
Biogeosciences, 17, 3149–3163, https://doi.org/10.5194/bg-17-3149-2020, https://doi.org/10.5194/bg-17-3149-2020, 2020
Short summary
Short summary
This study looks at forest abiotic responses to canopy openness and debris deposition that follow a hurricane. We find that recovery to full canopy may take over half a decade and that recovery of humidity, soil moisture, and leaf saturation under the canopy is not monotonic and may temporarily look recovered before the response is over. Furthermore, we find that satellite data show a quicker recovery than field data, necessitating caution when looking at responses to hurricanes with satellites.
Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais, Felix Cremer, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra, and Miguel D. Mahecha
Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, https://doi.org/10.5194/bg-17-945-2020, 2020
Short summary
Short summary
Vegetation typically responds to variation in temperature and rainfall within days. Yet seasonal changes in meteorological conditions, as well as decadal climate variability, additionally shape the state of ecosystems. It remains unclear how vegetation responds to climate variability on these different timescales. We find that the vegetation response to climate variability depends on the timescale considered. This scale dependency should be considered for modeling land–atmosphere interactions.
Ronny Meier, Edouard L. Davin, Quentin Lejeune, Mathias Hauser, Yan Li, Brecht Martens, Natalie M. Schultz, Shannon Sterling, and Wim Thiery
Biogeosciences, 15, 4731–4757, https://doi.org/10.5194/bg-15-4731-2018, https://doi.org/10.5194/bg-15-4731-2018, 2018
Short summary
Short summary
Deforestation not only releases carbon dioxide to the atmosphere but also affects local climatic conditions by altering energy fluxes at the land surface and thereby the local temperature. Here, we evaluate the local impact of deforestation in a widely used land surface model. We find that the model reproduces the daytime warming effect of deforestation well. On the other hand, the warmer temperatures observed during night in forests are not present in this model.
Alan Smith, Andrew Cooper, Saumitra Misra, Vishal Bharuth, Lisa Guastella, and Riaan Botes
Biogeosciences, 15, 2189–2203, https://doi.org/10.5194/bg-15-2189-2018, https://doi.org/10.5194/bg-15-2189-2018, 2018
Short summary
Short summary
Growing shore-platform stromatolites are increasingly found on modern rocky coasts. Stromatolites are very similar to Archean and Proterozoic stromatolites. A study of modern stromatolites may shed light on the conditions that existed on the early Earth and other planets and possibly provide information on how life began.
Luciana M. Sanders, Kathryn Taffs, Debra Stokes, Christian J. Sanders, Alex Enrich-Prast, Leonardo Amora-Nogueira, and Humberto Marotta
Biogeosciences, 15, 447–455, https://doi.org/10.5194/bg-15-447-2018, https://doi.org/10.5194/bg-15-447-2018, 2018
Short summary
Short summary
The Amazon rainforest produce large quantities of carbon, a portion of which is deposited in floodplain lakes. This research shows a potentially important spatial dependence of the carbon deposition in the Amazon lacustrine sediments in relation to deforestation rates in the catchment. The findings presented here highlight the effects of abrupt and temporary events in which some of the biomass released by the deforestation reach the depositional environments in the Amazon floodplains.
Etienne Godin, Daniel Fortier, and Esther Lévesque
Biogeosciences, 13, 1439–1452, https://doi.org/10.5194/bg-13-1439-2016, https://doi.org/10.5194/bg-13-1439-2016, 2016
Short summary
Short summary
Bowl-shaped ice-wedge polygons in permafrost regions can retain snowmelt water and moisture in their center. On Bylot Island (NU, CA), a rapidly developing thermal erosion gully eroded the polygons' ridges, impacting the polygon centers' ground moisture and temperature, plant cover and species. An intact polygon was homogeneous in its center for the aforementioned elements, whereas eroded polygons had a varying response following the breach, with heterogeneity as their new equilibrium state.
M. Marshall, E. Okuto, Y. Kang, E. Opiyo, and M. Ahmed
Biogeosciences, 13, 625–639, https://doi.org/10.5194/bg-13-625-2016, https://doi.org/10.5194/bg-13-625-2016, 2016
Short summary
Short summary
We compared two new Earth observation based long-term global vegetation index products used in global change research (Global Inventory Modeling and Mapping Studies and Vegetation Index and Phenology Lab- VIP version 3). The two products showed a high level of consistency throughout the primary growing season and were less consistent during green-up and brown-down that impacted trends in phenology. VIP was generally higher and more variable leading to poorer correlations with in situ data
G. Mendiguren, M. Pilar Martín, H. Nieto, J. Pacheco-Labrador, and S. Jurdao
Biogeosciences, 12, 5523–5535, https://doi.org/10.5194/bg-12-5523-2015, https://doi.org/10.5194/bg-12-5523-2015, 2015
S. Chen, J. Beardall, and K. Gao
Biogeosciences, 11, 4829–4837, https://doi.org/10.5194/bg-11-4829-2014, https://doi.org/10.5194/bg-11-4829-2014, 2014
F. Günther, P. P. Overduin, A. V. Sandakov, G. Grosse, and M. N. Grigoriev
Biogeosciences, 10, 4297–4318, https://doi.org/10.5194/bg-10-4297-2013, https://doi.org/10.5194/bg-10-4297-2013, 2013
B. M. Rogers, J. T. Randerson, and G. B. Bonan
Biogeosciences, 10, 699–718, https://doi.org/10.5194/bg-10-699-2013, https://doi.org/10.5194/bg-10-699-2013, 2013
Y. Xia and X. Yan
Biogeosciences, 8, 3159–3168, https://doi.org/10.5194/bg-8-3159-2011, https://doi.org/10.5194/bg-8-3159-2011, 2011
R. Sulpizio, G. Zanchetta, M. D'Orazio, H. Vogel, and B. Wagner
Biogeosciences, 7, 3273–3288, https://doi.org/10.5194/bg-7-3273-2010, https://doi.org/10.5194/bg-7-3273-2010, 2010
Cited articles
Álvarez, M., Catalá, T. S., Civitarese, G., Coppola, L., Hassoun, A. E. R., Ibello, V., Lazzari, P., Lefevre, D., Macías, D., Santinelli, C., and Ulses, C.: Mediterranean Sea general biogeochemistry, in: Oceanography of the Mediterranean Sea, edited by: Schroeder, K. and Chiggiato, J., Elsevier, 387–451, https://doi.org/10.1016/B978-0-12-823692-5.00004-2, 2023.
Baker, D. F.: Reassessing Carbon Sinks, Science, 317, 1708–1709, https://doi.org/10.1126/science.1144863, 2007.
Bartzke, G., Siemann, L., Büssing, R., Nardone, P., Koll, K., Hebbeln, D., and Huhn, K.: Investigating the Prevailing Hydrodynamics Around a Cold-Water Coral Colony Using a Physical and a Numerical Approach, Front. Mar. Sci., 8, 663304, https://doi.org/10.3389/fmars.2021.663304, 2021.
Bergamaschi, B. A., Tsamakis, E., Keil, R. G., Eglinton, T. I., Montluçon, D. B., and Hedges, J. I.: The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments, Geochim. Cosmochim. Ac., 61, 1247–1260, https://doi.org/10.1016/S0016-7037(96)00394-8, 1997.
Blum, P.: Physical Properties Handbook: A Guide to the Shipboard Measurement of Physical Properties of Deep-Sea Cores, College Station, Texas, USA, http://www-odp.tamu.edu (last access: 28 April 2025), 1997.
Bradley, D. C.: Passive margins through earth history, Earth-Sci. Rev., 91, 1–26, https://doi.org/10.1016/j.earscirev.2008.08.001, 2008.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?, Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Butzin, M., Köhler, P., and Lohmann, G.: Marine radiocarbon reservoir age simulations for the past 50,000 years, Geophys. Res. Lett., 44, 8473–8480, https://doi.org/10.1002/2017gl074688, 2017.
Canfield, D. E.: Factors influencing organic carbon preservation in marine sediments, Chem. Geol., 114, 315–329, https://doi.org/10.1016/0009-2541(94)90061-2, 1994.
Camoin, G. F. and Webster, J. M.: Coral reef response to Quaternary sea-level and environmental changes: State of the science, Sedimentology, 62, 401–428, https://doi.org/10.1111/sed.12184, 2015.
Cartapanis, O., Galbraith, E. D., Bianchi, D., and Jaccard, S. L.: Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle, Clim. Past, 14, 1819–1850, https://doi.org/10.5194/cp-14-1819-2018, 2018.
Cathalot, C., Van Oevelen, D., Cox, T. J. S., Kutti, T., Lavaleye, M., Duineveld, G., and Meysman, F. J. R.: Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea, Front. Mar. Sci., 2, 00037, https://doi.org/10.3389/fmars.2015.00037, 2015.
Comas, M. C., Zahn, R., Klaus, A., et al.: Leg 161, Proc. ODP, Init. Repts., College Station, TX (Ocean Drilling Program). https://doi.org/10.2973/odp.proc.ir.161.1996, 1996.
Corbera, G., Lo Iacono, C., Gràcia, E., Grinyó, J., Pierdomenico, M., Huvenne, V. A. I., Aguilar, R., and Gili, J. M.: Ecological characterisation of a Mediterranean cold-water coral reef: Cabliers Coral Mound Province (Alboran Sea, western Mediterranean), Prog. Oceanogr., 175, 245–262, https://doi.org/10.1016/j.pocean.2019.04.010, 2019.
Corbera, G., Lo Iacono, C., Standish, C. D., Anagnostou, E., Titschack, J., Katsamenis, O., Cacho, I., Van Rooij, D., Huvenne, V. A. I., and Foster, G. L.: Glacio-eustatic variations and sapropel events as main controls on the Middle Pleistocene-Holocene evolution of the Cabliers Coral Mound Province (W Mediterranean), Quat. Sci. Rev., 253, 106783, https://doi.org/10.1016/j.quascirev.2020.106783, 2021.
Corbera, G., Lo Iacono, C., Simarro, G., Grinyó, J., Ambroso, S., Huvenne, V. A. I., Mienis, F., Carreiro-Silva, M., Martins, I., Mano, B., Orejas, C., Larsson, A., Hennige, S., and Gori, A.: Local-scale feedbacks influencing cold-water coral growth and subsequent reef formation, Sci. Rep., 12, 20389, https://doi.org/10.1038/s41598-022-24711-7, 2022.
Cyr, F., van Haren, H., Mienis, F., Duineveld, G., and Bourgault, D.: On the influence of cold-water coral mound size on flow hydrodynamics, and vice versa, Geophys. Res. Lett., 43, 775–783, https://doi.org/10.1002/2015GL067038, 2016.
Dahl, M., Deyanova, D., Gutschow, S., Asplund, M. E., Lyimo, L. D., Karamfilov, V., Santos, R., Bjork, M., and Gullstrom, M.: Sediment Properties as Important Predictors of Carbon Storage in Zostera marina Meadows: A Comparison of Four European Areas, PLoS One, 11, e0167493, https://doi.org/10.1371/journal.pone.0167493, 2016.
Davies, A. J. and Guinotte, J. M.: Global habitat suitability for framework-forming cold-water corals, PLoS One, 6, e18483, https://doi.org/10.1371/journal.pone.0018483, 2011.
De Clippele, L. H., Rovelli, L., Ramiro-Sánchez, B., Kazanidis, G., Vad, J., Turner, S., Glud, R. N., and Roberts, J. M.: Mapping cold-water coral biomass: an approach to derive ecosystem functions, Coral Reefs, 40, 215–231, https://doi.org/10.1007/s00338-020-02030-5, 2021a.
De Clippele, L. H., van der Kaaden, A.-S., Maier, S. R., de Froe, E., and Roberts, J. M.: Biomass Mapping for an Improved Understanding of the Contribution of Cold-Water Coral Carbonate Mounds to C and N Cycling, Front. Mar. Sci., 8, 721062, https://doi.org/10.3389/fmars.2021.721062, 2021b.
de Froe, E., Rovelli, L., Glud, R. N., Maier, S. R., Duineveld, G., Mienis, F., Lavaleye, M., and van Oevelen, D.: Benthic Oxygen and Nitrogen Exchange on a Cold-Water Coral Reef in the North-East Atlantic Ocean, Front. Mar. Sci., 6, 00665, https://doi.org/10.3389/fmars.2019.00665, 2019.
de Haas, H., Mienis, F., Frank, N., Richter, T. O., Steinacher, R., de Stigter, H., van der Land, C., and van Weering, T. C. E.: Morphology and sedimentology of (clustered) cold-water coral mounds at the south Rockall Trough margins, NE Atlantic Ocean, Facies, 55, 1–26, https://doi.org/10.1007/s10347-008-0157-1, 2009.
de Kaenel, E., Siesser, W. G., and Murat, A.: Pleistocene calcareous nannofossil biostratigraphy and the western Mediterranean sapropels, Sites 974 to 977 and 979, in: Leg 161, Proc. ODP, Sci. Res., edited by: Zahn, R., Comas, M. C., and Klaus, A., College Station, TX (Ocean Drilling Program), 159–183, https://doi.org/10.2973/odp.proc.sr.161.250.1999, 1999.
Diesing, M.: Deep-sea sediments of the global ocean, Earth Syst. Sci. Data, 12, 3367–3381, https://doi.org/10.5194/essd-12-3367-2020, 2020.
Dorschel, B., Hebbeln, D., Rüggeberg, A., Dullo, W., and Freiwald, A.: Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene, Earth Planet. Sci. Lett., 233, 33–44, https://doi.org/10.1016/j.epsl.2005.01.035, 2005.
Dorschel, B., Hebbeln, D., Foubert, A., White, M., and Wheeler, A. J.: Hydrodynamics and cold-water coral facies distribution related to recent sedimentary processes at Galway Mound west of Ireland, Mar. Geol., 244, 184–195, https://doi.org/10.1016/j.margeo.2007.06.010, 2007a.
Dorschel, B., Hebbeln, D., Rüggeberg, A., and Dullo, C.: Carbonate budget of a cold-water coral carbonate mound: Propeller Mound, Porcupine Seabight, Int. J. Earth Sci., 96, 73–83, https://doi.org/10.1007/s00531-005-0493-0, 2007b.
Dorschel, B., Wheeler, A. J., Huvenne, V. A. I., and de Haas, H.: Cold-water coral mounds in an erosive environmental setting: TOBI side-scan sonar data and ROV video footage from the northwest Porcupine Bank, NE Atlantic, Mar. Geol., 264, 218–229, https://doi.org/10.1016/j.margeo.2009.06.005, 2009.
Douarin, M., Elliot, M., Noble, S. R., Sinclair, D., Henry, L.-A., Long, D., Moreton, S. G., and Roberts, J. M.: Growth of north-east Atlantic cold-water coral reefs and mounds during the Holocene: A high resolution U-series and 14C chronology, Earth Planet. Sci. Lett., 375, 176–187, https://doi.org/10.1016/j.epsl.2013.05.023, 2013.
Douarin, M., Sinclair, D. J., Elliot, M., Henry, L.-A., Long, D., Mitchison, F., and Roberts, J. M.: Changes in fossil assemblage in sediment cores from Mingulay Reef Complex (NE Atlantic): Implications for coral reef build-up, Deep Sea Res. Pt. II: Top. Stud. Oceanogr., 99, 286–296, https://doi.org/10.1016/j.dsr2.2013.07.022, 2014.
Duchesne, M. J., Moore, F., Long, B. F., and Labrie, J.: A rapid method for converting medical Computed Tomography scanner topogram attenuation scale to Hounsfield Unit scale and to obtain relative density values, Eng. Geol., 103, 100–105, https://doi.org/10.1016/j.enggeo.2008.06.009, 2009.
Edinger, E., Bourillet, J.-F., Menot, L., Lartaud, F., Chemel, M., and Jorry, S.: Late Holocene and recent cold-water coral calcium carbonate production in Guilvinec Canyon, Bay of Biscay, France. Deep Sea Res. Pt. II: Top. Stud. Oceanogr., 220, 105451, https://doi.org/10.1016/j.dsr2.2024.105451, 2025.
EMODnet Bathymetry Consortium: EMODnet Digital Bathymetry (DTM 2022), EMODnet [data set], https://doi.org/10.12770/ff3aff8a-cff1-44a3-a2c8-1910bf109f85, 2022.
Epstein, G., Fuller, S. D., Hingmire, D., Myers, P. G., Peña, A., Pennelly, C., and Baum, J. K.: Predictive mapping of organic carbon stocks in surficial sediments of the Canadian continental margin, Earth Syst. Sci. Data, 16, 2165–2195, https://doi.org/10.5194/essd-16-2165-2024, 2024.
Ercilla, G., Juan, C., Hernandez-Molina, F. J., Bruno, M., Estrada, F., Alonso, B., Casas, D., Farran, M. L., Llave, E., García, M., Vázquez, J. T., D'Acremont, E., Gorini, C., Palomino, D., Valencia, J., El Moumni, B., and Ammar, A.: Significance of bottom currents in deep-sea morphodynamics: an example from the Alboran Sea, Mar. Geol., 378, 157–170, https://doi.org/10.1016/j.margeo.2015.09.007, 2016.
Fentimen, R., Feenstra, E., Rüggeberg, A., Vennemann, T., Hajdas, I., Adatte, T., Van Rooij, D., and Foubert, A.: Cold-Water Coral Mound Archive Provides Unique Insights Into Intermediate Water Mass Dynamics in the Alboran Sea During the Last Deglaciation, Front. Mar. Sci., 7, 00354, https://doi.org/10.3389/fmars.2020.00354, 2020.
Fentimen, R., Feenstra, E., Rüggeberg, A., Hall, E., Rime, V., Vennemann, T., Hajdas, I., Rosso, A., Van Rooij, D., Adatte, T., Vogel, H., Frank, N., and Foubert, A.: A 300 000-year record of cold-water coral mound build-up at the East Melilla Coral Province (SE Alboran Sea, western Mediterranean), Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, 2022.
Fentimen, R., Feenstra, E. J., Rüggeberg, A., Hall, E., Rosso, A., Hajdas, I., Jaramillo-Vogel, D., Grobéty, B., Adatte, T., Van Rooij, D., Frank, N., and Foubert, A.: Staggered cold-water coral mound build-up on an Alboran ridge during the last deglacial (East Melilla Mound Field, western Mediterranean), Mar. Geol., 457, 106994, https://doi.org/10.1016/j.margeo.2023.106994, 2023.
Fink, H. G., Wienberg, C., De Pol-Holz, R., Wintersteller, P., and Hebbeln, D.: Cold-water coral growth in the Alboran Sea related to high productivity during the Late Pleistocene and Holocene, Mar. Geol., 339, 71–82, https://doi.org/10.1016/j.margeo.2013.04.009, 2013.
Frank, N., Ricard, E., Lutringer-Paquet, A., van der Land, C., Colin, C., Blamart, D., Foubert, A., Van Rooij, D., Henriet, J.-P., de Haas, H., and van Weering, T.: The Holocene occurrence of cold-water corals in the NE Atlantic: Implications for coral carbonate mound evolution, Mar. Geol., 266, 129–142, https://doi.org/10.1016/j.margeo.2009.08.007, 2009.
Frederiksen, R., Jensen, A., and Westerberg, H.: The distribution of the scleractinian coral Lophelia pertusa around the Faroe Islands and the relation to internal tidal mixing, Sarsia, 77, 157–171, https://doi.org/10.1080/00364827.1992.10413502, 1992.
Freudenthal, T. and Wefer, G.: Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo, Geosci. Instrum. Method. Data Syst., 2, 329–337, https://doi.org/10.5194/gi-2-329-2013, 2013.
GEBCO Bathymetric Compilation Group: The GEBCO_2024 Grid – a continuous terrain model of the global oceans and land, NERC EDS British Oceanographic Data Centre [data set], https://doi.org/10.5285/1c44ce99-0a0d-5f4f-e063-7086abc0ea0f, 2024.
Gerland, S. and Villinger, H.: Nondestructive density determination on marine sediment cores from gamma-ray attenuation measurements, Geo-Marine Letters, 15, 111–118, https://doi.org/10.1007/BF01275415, 1995.
Greiffenhagen, L., Titschack, J., Wienberg, C., Wang, H., and Hebbeln, D: Sediment density measurements based on pycnometer measurements of core MD13-3457 from the Alborán Sea, Marion Dufresne Cruise MD194, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971923, 2025a.
Greiffenhagen, L., Titschack, J., Wienberg, C., Wang, H., and Hebbeln, D: Sediment density measurements based on pycnometer and CT measurements of sediment core GeoB18116-2 from Dragon Mound, Alborán Sea, Maria S. Merian cruise MSM36, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971884, 2025b.
Greiffenhagen, L., Titschack, J., Wienberg, C., Wang, H., and Hebbeln, D: Stable oxygen isotopes of Cibicidoides mundulus from sediment core MD13-3457, Alborán Sea, Marion Dufresne Cruise MD194, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971935, 2025c.
Greiffenhagen, L., Titschack, J., Wienberg, C., Wang, H., and Hebbeln, D: AMS 14C age determination for sediment core MD13-3457, Alborán Sea, Marion Dufresne Cruise MD194, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971925, 2025d.
Greiffenhagen, L., Titschack, J., Wienberg, C., Wang, H., and Hebbeln, D: Total Organic Carbon and Total Inorganic Carbon content data of sediment core MD13-3457, Alborán Sea, Marion Dufresne Cruise MD194, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971806, 2025e.
Greiffenhagen, L., Titschack, J., Wienberg, C., Wang, H., and Hebbeln, D: Total organic carbon and total inorganic carbon content data of sediment core GeoB18116-2 from Dragon Mound, Alborán Sea, Maria S. Merian cruise MSM36, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971862, 2025f.
Greiffenhagen, L., Titschack, J., Wienberg, C., Wang, H., Hebbeln, D, Timann, C., and Lemke, A-J.: CT raw data (DICOM format) of sediment core GeoB18116-2 from Dragon Mound, Alborán Sea, Maria S. Merian cruise MSM36, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.973154, 2025g.
Greiffenhagen, L., Titschack, J., Wienberg, C., Wang, H., and Hebbeln, D: Processed CT image-based volume data of sediment core GeoB18116-2 from Dragon Mound, Alborán Sea, Maria S. Merian cruise MSM36, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971900, 2025h.
Hanz, U., Wienberg, C., Hebbeln, D., Duineveld, G., Lavaleye, M., Juva, K., Dullo, W.-C., Freiwald, A., Tamborrino, L., Reichart, G.-J., Flögel, S., and Mienis, F.: Environmental factors influencing benthic communities in the oxygen minimum zones on the Angolan and Namibian margins, Biogeosciences, 16, 4337–4356, https://doi.org/10.5194/bg-16-4337-2019, 2019.
Hayes, D. R., Schroeder, K., Poulain, P.-M., Testor, P., Mortier, L., Bosse, A., and du Madron, X.: Review of the Circulation and Characteristics of Intermediate Water Masses of the Mediterranean: Implications for Cold-Water Coral Habitats, in: Mediterranean Cold-Water Corals: Past, Present and Future Coral Reefs of the World, 195–211, https://doi.org/10.1007/978-3-319-91608-8_18, 2019.
Hebbeln, D.: Highly Variable Submarine Landscapes in the Alborán Sea Created by Cold-Water Corals, in: Mediterr. Cold-Water Corals: Past, Present and Future, edited by: Orejas, C. and Jimenéz, C., Vol. 9, Coral Reefs of the World, https://doi.org/10.1007/978-3-319-91608-8_8, 2019.
Hebbeln, D. and Gaide, S.: MSM36 raw data of EM122 multibeam echosounder (bathymetry, beam time series & water column data) for the Alboran Sea, MARUM – Center for Marine Environmental Sciences, University Bremen, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.895349, 2018.
Hebbeln, D., Wienberg, C., Beuck, L., Freiwald, A., Wintersteller, P., and cruise participants: Report and preliminary results of RV POSEIDON Cruise POS 385 “Cold-Water Corals of the Alboran Sea (western Mediterranean Sea)”, Faro – Toulon, 29 May–16 June 2009, Bremen, Germany, http://nbn-resolving.de/urn:nbn:de:gbv:46-ep000106508 (last access: 29 April 2025), 2009.
Hebbeln, D., Wienberg, C., Bartels, M., Bergenthal, M., Frank, N., Gaide, S., Henriet, J. P., Kaszemeik, K., Klar, S., Klein, T., Krengel, T., Kuhnert, M., Meyer-Schack, B., Noorlander, C., Reuter, M., Rosiak, U., Schmidt, W., Seeba, H., Seiter, C., Strange, N., Terhzaz, L., and Van Rooij, D.: MoccoMeBo: Climate-driven development of Moroccan cold-water coral mounds revealed by MeBo-drilling: Atlantic vs. Mediterranean settings, https://doi.org/10.2312/cr_msm36, 2015.
Hebbeln, D., Van Rooij, D. and Wienberg, C.: Good neighbours shaped by vigorous currents: Cold-water coral mounds and contourites in the North Atlantic, Mar. Geol., 378, 171–185. https://doi.org/10.1016/j.margeo.2016.01.014, 2016.
Hebbeln, D., Bender, M., Gaide, S., Titschack, J., Vandorpe, T., Van Rooij, D., Wintersteller, P., and Wienberg, C.: Thousands of cold-water coral mounds along the Moroccan Atlantic continental margin: Distribution and morphometry, Mar. Geol., 411, 51–61, https://doi.org/10.1016/j.margeo.2019.02.001, 2019.
Henry, L.-A. and Roberts, J. M.: Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic, Deep Sea Res. Oceanogr. Res. Pap., 54, 654–672, https://doi.org/10.1016/j.dsr.2007.01.005, 2007.
Henry, L.-A. and Roberts, J. M.: Global biodiversity in cold-water coral reef ecosystems, in: Marine Animal Forests, edited by: Rossi, S., Bramanti, L., Gori, A., and Orejas, C., Springer, 235–256. https://doi.org/10.1007/978-3-319-21012-4_6, 2017.
Howard, J., Sutton-Grier, A., Herr, D., Kleypas, J., Landis, E., McLeod, E., Pidgeon, E., and Simpson, S.: Clarifying the role of coastal and marine systems in climate mitigation, Front. Ecol. Environ., 15, 42–50, https://doi.org/10.1002/fee.1451, 2017.
Huvenne, V. A. I., Van Rooij, D., De Mol, B., Thierens, M., O'Donnell, R., and Foubert, A.: Sediment dynamics and palaeo-environmental context at key stages in the Challenger cold-water coral mound formation: Clues from sediment deposits at the mound base, Deep-Sea Res. I, 56, 2263–2280, https://doi.org/10.1016/j.dsr.2009.08.003, 2009.
IODP: Depth Scales Terminology, Ver. 2.0. https://www.iodp.org/policies-and-guidelines/142-iodp-depth-scales-terminology-april-2011/file (last access: 29 April 2025), 2011.
James, K., Macreadie, P. I., Burdett, H. L., Davies, I., and Kamenos, N. A.: It's time to broaden what we consider a 'blue carbon ecosystem', Glob. Change Biol., 30, e17261, https://doi.org/10.1111/gcb.17261, 2024.
Johnson, B. J., Moore, K. A., Lehmann, C., Bohlen, C., and Brown, T. A.: Middle to late Holocene fluctuations of C3 and C4 vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine, Org. Geochem., 38, 394–403, https://doi.org/10.1016/j.orggeochem.2006.06.006, 2007.
Karlson, A. M., Nascimento, F. J., Naslund, J., and Elmgren, R.: Higher diversity of deposit-feeding macrofauna enhances phytodetritus processing, Ecology, 91, 1414–1423, https://doi.org/10.1890/09-0660.1, 2010.
Kiriakoulakis, K., Bett, B. J., White, M., and Wolff, G. A.: Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic, Deep-Sea Res. I, 51, 1937–1954, https://doi.org/10.1016/j.dsr.2004.07.010, 2004.
Kiriakoulakis, K., Freiwald, A., Fisher, E., and Wolff, G. A.: Organic matter quality and supply to deep-water coral/mound systems of the NW European Continental Margin, Int. J. Earth Sci., 96, 159–170, https://doi.org/10.1007/s00531-006-0078-6, 2007.
Korpanty, C. A., Hoffman, L., da Costa Portilho-Ramos, R., Titschack, J., Wienberg, C., and Hebbeln, D.: Decline in cold-water coral growth promotes molluscan diversity: A paleontological perspective from a cold-water coral mound in the western Mediterranean Sea, Front. Mar. Sci., 9, 895946, https://doi.org/10.3389/fmars.2022.895946, 2023.
Langner, M. and Mulitza, S.: Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data, Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, 2019.
Lindberg, B. and Mienert, J.: Postglacial carbonate production by cold-water corals on the Norwegian Shelf and their role in the global carbonate budget, Geology, 33, 537–540, https://doi.org/10.1130/g21577.1, 2005.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004pa001071, 2005.
Lo Iacono, C., Gràcia, E., Ranero, C. R., Emelianov, M., Huvenne, V. A. I., Bartolomé, R., Booth-Rea, G., Prades, J., Ambroso, S., Dominguez, C., Grinyó, J., Rubio, E., and Torrent, J.: The West Melilla cold water coral mounds, Eastern Alboran Sea: Morphological characterization and environmental context, Deep-Sea Res. II, 99, 316–326, https://doi.org/10.1016/j.dsr2.2013.07.006, 2014.
Lougheed, B. C. and Obrochta, S. P.: A Rapid, Deterministic Age-Depth Modeling Routine for Geological Sequences With Inherent Depth Uncertainty, Paleoceanogr. Paleoclimatol., 34, 122–133, https://doi.org/10.1029/2018pa003457, 2019.
Maier, S. R., Kutti, T., Bannister, R. J., Fang, J. K., van Breugel, P., van Rijswijk, P., and van Oevelen, D.: Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa, Sci. Rep., 10, 9942, https://doi.org/10.1038/s41598-020-66463-2, 2020.
Maier, S. R., Brooke, S., De Clippele, L. H., de Froe, E., van der Kaaden, A.-S., Kutti, T., Mienis, F., and van Oevelen, D.: On the paradox of thriving cold-water coral reefs in the food-limited deep sea, Biol. Rev., 98, 1298–1316, https://doi.org/10.1111/brv.12976, 2023.
Masqué, P., Fabres, J., Canals, M., Sanchez-Cabeza, J. A., Sanchez-Vidal, A., Cacho, I., Calafat, A. M., and Bruach, J. M.: Accumulation rates of major constituents of hemipelagic sediments in the deep Alboran Sea: a centennial perspective of sedimentary dynamics, Mar. Geol., 193, 207–233, https://doi.org/10.1016/S0025-3227(02)00593-5, 2003.
Michel, J., Laugié, M., Pohl, A., Lanteaume, C., Masse, J.-P., Donnadieu, Y., and Borgomano, J.: Marine carbonate factories: a global model of carbonate platform distribution, Int. J. Earth Sci., 108, 1773–1792, https://doi.org/10.1007/s00531-019-01742-6, 2019.
Mienis, F., de Stigter, H. C., White, M., Duineveld, G., de Haas, H., and van Weering, T. C. E.: Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean, Deep-Sea Res. I, 54, 1655–1674, https://doi.org/10.1016/j.dsr.2007.05.013, 2007.
Milliman, J. D.: Precipitation and Cementation of Deep-Sea Carbonate Sediments, in: Deep-Sea Sediments: Physical and Mechanical Properties, edited by: Inderbitzen, A. L., Springer US, Boston, MA, 463–476, https://doi.org/10.1007/978-1-4684-2754-7_23, 1974.
Milliman, J. D.: Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cy., 7, 927–957, https://doi.org/10.1029/93GB02524, 1993.
Millot, C.: Circulation in the western Mediterranean Sea, J. Mar. Syst., 20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999.
Mohn, C., Rengstorf, A., White, M., Duineveld, G., Mienis, F., Soetaert, K., and Grehan, A.: Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic, Prog. Oceanogr., 122, 92–104, https://doi.org/10.1016/j.pocean.2013.12.003, 2014.
Morán, X. A. G. and Estrada, M.: Short-term variability of photosynthetic parameters and particulate and dissolved primary production in the Alboran Sea (SW Mediterranean), Mar. Ecol. Prog. Ser., 212, 53–67, https://doi.org/10.3354/meps212053, 2001.
O'Mara, N. A. and Dunne, J. P.: Hot Spots of Carbon and Alkalinity Cycling in the Coastal Oceans, Sci. Rep., 9, 4434, https://doi.org/10.1038/s41598-019-41064-w, 2019.
Orsi, T. H. and Anderson, A. L.: Bulk density calibration for X-ray tomographic analyses of marine sediments, Geo-Mar. Lett., 19, 270–274, https://doi.org/10.1007/s003670050118, 1999.
Orsi, T. H., Edwards, C. M., and Anderson, A. L.: X-ray computed tomography: a nondestructive method for quantitative analysis of sediment cores, J. Sediment. Res., 64, 3, https://doi.org/10.1306/D4267E74-2B26-11D7-8648000102C1865D, 1994.
Paradis, S., Nakajima, K., Van der Voort, T. S., Gies, H., Wildberger, A., Blattmann, T. M., Bröder, L., and Eglinton, T. I.: The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0, Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, 2023.
Pirlet, H., Colin, C., Thierens, M., Latruwe, K., Van Rooij, D., Foubert, A., Frank, N., Blamart, D., Huvenne, V. A. I., Swennen, R., Vanhaecke, F., and Henriet, J.-P.: The importance of the terrigenous fraction within a cold-water coral mound: A case study, Mar. Geol., 282, 13–25, https://doi.org/10.1016/j.margeo.2010.05.008, 2011.
Portilho-Ramos, R. D. C., Titschack, J., Wienberg, C., Siccha Rojas, M. G., Yokoyama, Y., and Hebbeln, D.: Major environmental drivers determining life and death of cold-water corals through time, PLoS Biol., 20, e3001628, https://doi.org/10.1371/journal.pbio.3001628, 2022.
Puig, P., Palanques, A., Guillén, J., and El Khatab, M.: Role of internal waves in the generation of nepheloid layers on the northwestern Alboran slope: Implications for continental margin shaping, J. Geophys. Res.-Oceans, 109, C09011, https://doi.org/10.1029/2004jc002394, 2004.
Reijmer, J. J. G.: Marine carbonate factories: Review and update, Sedimentology, 68, 1729–1796, https://doi.org/10.1111/sed.12878, 2021.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/rdc.2020.41, 2020.
Ridgwell, A. and Zeebe, R.: The role of the global carbonate cycle in the regulation and evolution of the Earth system, Earth Planet. Sci. Lett., 234, 299–315, https://doi.org/10.1016/j.epsl.2005.03.006, 2005.
Roberts, J. M., Freiwald, A., Wheeler, A., and Cairns, S.: Cold-Water Corals, Cambridge Univ. Press, https://doi.org/10.1017/cbo9780511581588.005, 2009.
Rossi, S. and Rizzo, L.: Marine Animal Forests as Carbon Immobilizers or Why We Should Preserve These Three-Dimensional Alive Structures, in: Perspect. Mar. Anim. Forests World, edited by: Rossi, S. and Bramanti, L., 333–400, https://doi.org/10.1007/978-3-030-57054-5_11, 2020.
Roulet, N. T., Lafleur, P. M., Richard, P. J. H., Moore, T. R., Humphreys, E. R., and Bubier, J.: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland, Global Change Biol., 13, 397–411, https://doi.org/10.1111/j.1365-2486.2006.01292.x, 2007.
Samper-Villarreal, J., Mumby, P. J., Saunders, M. I., Barry, L. A., Zawadzki, A., Heijnis, H., Morelli, G., and Lovelock, C. E.: Vertical accretion and carbon burial rates in subtropical seagrass meadows increased following anthropogenic pressure from European colonisation, Estuar. Coast. Shelf Sci., 202, 40–53, https://doi.org/10.1016/j.ecss.2017.12.006, 2018.
Sánchez-Garrido, J. C. and Nadal, I.: The Alboran Sea circulation and its biological response: A review, Front. Mar. Sci., 9, 933390, https://doi.org/10.3389/fmars.2022.933390, 2022.
Sanchez-Vidal, A., Calafat, A., Canals, M., Frigola, J., and Fabres, J.: Particle fluxes and organic carbon balance across the Eastern Alboran Sea (SW Mediterranean Sea), Cont. Shelf Res., 25, 609–628, https://doi.org/10.1016/j.csr.2004.11.004, 2005.
Schlager, W.: The paradox of drowned reefs and carbonate platforms, GSA Bull., 92, 197–211, https://doi.org/10.1130/0016-7606(1981)92<197:TPODRA>2.0.CO;2, 1981.
Schlager, W.: Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems, Geol. Soc. Lond. Spec. Publ., 178, 217–227, https://doi.org/10.1144/GSL.SP.2000.178.01.14, 2000.
Schlager, W.: Benthic carbonate factories of the Phanerozoic, Int. J. Earth Sci., 92, 445–464, https://doi.org/10.1007/s00531-003-0327-x, 2003.
Schmitz, O. J., Raymond, P. A., Estes, J. A., Kurz, W. A., Holtgrieve, G. W., Ritchie, M. E., Schindler, D. E., Spivak, A. C., Wilson, R. W., Bradford, M. A., Christensen, V., Deegan, L., Smetacek, V., Vanni, M. J., and Wilmers, C. C.: Animating the Carbon Cycle, Ecosystems, 17, 344–359, https://doi.org/10.1007/s10021-013-9715-7, 2014.
Schmitz, O. J., Wilmers, C. C., Leroux, S. J., Doughty, C. E., Atwood, T. B., Galetti, M., Davies, A. B., and Goetz, S. J.: Animals and the zoogeochemistry of the carbon cycle, Science, 362, 6419, https://doi.org/10.1126/science.aar3213, 2018.
Shipboard Scientific Party: Site 979, in: Leg 161, Proc. ODP, Init. Repts., edited by: Comas, M. C., Zahn, R., Klaus, A., et al., College Station, TX (Ocean Drilling Program), 389–426, https://doi.org/10.2973/odp.proc.ir.161.109.1996, 1996.
Smith, S. V. and Mackenzie, F. T.: The Role of CaCO3 Reactions in the Contemporary Oceanic CO2 Cycle, Aquat. Geochem., 22, 153–175, https://doi.org/10.1007/s10498-015-9282-y, 2016.
Soetaert, K., Mohn, C., Rengstorf, A., Grehan, A., and van Oevelen, D.: Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity, Sci. Rep., 6, 35057, https://doi.org/10.1038/srep35057, 2016.
Stalder, C., El Kateb, A., Vertino, A., Rüggeberg, A., Camozzi, O., Pirkenseer, C. M., Spangenberg, J. E., Hajdas, I., Van Rooij, D., and Spezzaferri, S.: Large-scale paleoceanographic variations in the western Mediterranean Sea during the last 34,000 years: From enhanced cold-water coral growth to declining mounds, Mar. Micropaleontol., 143, 46–62, https://doi.org/10.1016/j.marmicro.2018.07.007, 2018.
Stalling, D., Westerhoff, M., and Hege, H.-C.: Amira: a highly interactive system for visual data analysis, in: Visualization Handbook, edited by: Hansen, C. D. and Johnson, C. R., Butterworth-Heinemann, 749–767, https://doi.org/10.1016/B978-012387582-2/50040-X, 2005.
Strong, J. A., Andonegi, E., Bizsel, K. C., Danovaro, R., Elliott, M., Franco, A., Garces, E., Little, S., Mazik, K., Moncheva, S., Papadopoulou, N., Patrício, J., Queirós, A. M., Smith, C., Stefanova, K., and Solaun, O.: Marine biodiversity and ecosystem function relationships: The potential for practical monitoring applications, Estuar. Coast. Shelf Sci., 161, 46–64, https://doi.org/10.1016/j.ecss.2015.04.008, 2015.
Tamborrino, L., Wienberg, C., Titschack, J., Wintersteller, P., Mienis, F., Schröder-Ritzrau, A., Freiwald, A., Orejas, C., Dullo, W.-C., Haberkern, J., and Hebbeln, D.: Mid-Holocene extinction of cold-water corals on the Namibian shelf steered by the Benguela oxygen minimum zone, Geology, 47, 1185–1188, https://doi.org/10.1130/g46672.1, 2019.
Tamborrino, L., Titschack, J., Wienberg, C., Purkis, S., Eberli, G. P., and Hebbeln, D.: Spatial distribution and morphometry of the Namibian coral mounds controlled by the hydrodynamic regime and outer-shelf topography, Front. Mar. Sci., 9, 877616, https://doi.org/10.3389/fmars.2022.877616, 2022.
Thiem, Ø., Ravagnan, E., Fosså, J. H., and Berntsen, J.: Food supply mechanisms for cold-water corals along a continental shelf edge, J. Mar. Syst., 60, 207–219, https://doi.org/10.1016/j.jmarsys.2005.12.004, 2006.
Titschack, J., Thierens, M., Dorschel, B., Schulbert, C., Freiwald, A., Kano, A., Takashima, C., Kawagoe, N., and Li, X.: Carbonate budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307), Mar. Geol., 259, 36–46, https://doi.org/10.1016/j.margeo.2008.12.007, 2009.
Titschack, J., Baum, D., De Pol-Holz, R., López Correa, M., Forster, N., Flögel, S., Hebbeln, D., Freiwald, A., and Riegl, B.: Aggradation and carbonate accumulation of Holocene Norwegian cold-water coral reefs, Sedimentology, 62, 1873–1898, https://doi.org/10.1111/sed.12206, 2015.
Titschack, J., Fink, H. G., Baum, D., Wienberg, C., Hebbeln, D., and Freiwald, A.: Mediterranean cold-water corals – an important regional carbonate factory?, The Depositional Record, 2, 74–96, https://doi.org/10.1002/dep2.14, 2016.
van der Kaaden, A., Mohn, C., Gerkema, T., Maier, S. R., de Froe, E., van de Koppel, J., Rietkerk, M., Soetaert, K., and van Oevelen, D.: Feedbacks between hydrodynamics and cold-water coral mound development, Deep-Sea Res. I, 178, 103641, https://doi.org/10.1016/j.dsr.2021.103641, 2021.
van Oevelen, D., Duineveld, G., Lavaleye, M., Mienis, F., Soetaert, K., and Heip, C. H. R.: The cold-water coral community as hotspot of carbon cycling on continental margins: A food-web analysis from Rockall Bank (northeast Atlantic), Limnol. Oceanogr., 54, 1829–1844, https://doi.org/10.4319/lo.2009.54.6.1829, 2009.
Van Rooij, D., Hebbeln, D., Comas, M. C., Vandorpe, T., Delivet, S., and Scientists, M. S.: EUROFLEETS Cruise Summary Report GATEWAY. The Mediterranean-Atlantic Gateway Code: The Late Pleistocene Carbonate Mound Record. R/V Marion Dufresne, Cruise No. 194, 10–20 June 2013, Cadiz (Spain) – Lisbon (Portugal), https://doi.org/10.17600/13200130, 2013.
Wang, H., Lo Iacono, C., Wienberg, C., Titschack, J., and Hebbeln, D.: Cold-water coral mounds in the southern Alboran Sea (western Mediterranean Sea): Internal waves as an important driver for mound formation since the last deglaciation, Mar. Geol., 412, 1–18, https://doi.org/10.1016/j.margeo.2019.02.007, 2019.
Wang, H., Titschack, J., Wienberg, C., Korpanty, C., and Hebbeln, D.: The Importance of Ecological Accommodation Space and Sediment Supply for Cold-Water Coral Mound Formation, a Case Study From the Western Mediterranean Sea, Front. Mar. Sci., 8, 760909, https://doi.org/10.3389/fmars.2021.760909, 2021.
Wang, H., Titschack, J., Wienberg, C., Korpanty, C., and Hebbeln, D.: The importance of ecological accommodation space and sediment supply for cold-water coral mound formation, a case study from the Western Mediterranean Sea, PANGAEA [data set], in review, https://doi.org/10.1594/PANGAEA.941018, 2025.
Wehrmann, L. M., Knab, N. J., Pirlet, H., Unnithan, V., Wild, C., and Ferdelman, T. G.: Carbon mineralization and carbonate preservation in modern cold-water coral reef sediments on the Norwegian shelf, Biogeosciences, 6, 663–680, https://doi.org/10.5194/bg-6-663-2009, 2009.
Wheeler, A. J., Beyer, A., Freiwald, A., de Haas, H., Huvenne, V. A. I., Kozachenko, M., Olu-Le Roy, K., and Opderbecke, J.: Morphology and environment of cold-water coral carbonate mounds on the NW European margin, Int. J. Earth Sci., 96, 37–56, https://doi.org/10.1007/s00531-006-0130-6, 2007.
Wheeler, A. J., Kozachenko, M., Masson, D. G., and Huvenne, V. A. I.: Influence of benthic sediment transport on cold-water coral bank morphology and growth: the example of the Darwin Mounds, north-east Atlantic, Sedimentology, 55, 1875–1887, https://doi.org/10.1111/j.1365-3091.2008.00970.x, 2008.
Wienberg, C.: A Deglacial Cold-Water Coral Boom in the Alborán Sea: From Coral Mounds and Species Dominance, Mediterr. Cold-Water Corals: Past, Present and Future Coral Reefs of the World, 57–60, https://doi.org/10.1007/978-3-319-91608-8_7, 2019.
Wienberg, C. and Titschack, J.: Framework-Forming Scleractinian Cold-Water Corals Through Space and Time: A Late Quaternary North Atlantic Perspective, in: Marine Animal Forests, edited by: Rossi, S., Bramanti, L., Gori, A., and Orejas, C., 699–732, https://doi.org/10.1007/978-3-319-17001-5_16-1, 2017.
Wienberg, C., Titschack, J., Freiwald, A., Frank, N., Lundälv, T., Taviani, M., Beuck, L., Schröder-Ritzrau, A., Krengel, T., and Hebbeln, D.: The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation, Quat. Sci. Rev., 185, 135–152, https://doi.org/10.1016/j.quascirev.2018.02.012, 2018.
Wienberg, C., Krengel, T., Frank, N., Wang, H., Van Rooij, D., and Hebbeln, D.: Cold-water coral mounds in the western Mediterranean Sea: New insights into their initiation and development since the Mid-Pleistocene in response to changes of African hydroclimate, Quat. Sci. Rev., 293, 107723, https://doi.org/10.1016/j.quascirev.2022.107723, 2022.
Wienberg, C., Freiwald, A., Frank, N., Mienis, F., Titschack, J., Orejas, C., and Hebbeln, D.: Cold-Water Coral Reefs in the Oxygen Minimum Zones Off West Africa, Cold-Water Coral Reefs of the World Coral Reefs of the World, 199–235, https://doi.org/10.1007/978-3-031-40897-7_8, 2023.
Wood, M., Hayes, C. T., and Paytan, A.: Global Quaternary Carbonate Burial: Proxy- and Model-Based Reconstructions and Persisting Uncertainties, Ann. Rev. Mar. Sci., 15, 277–302, https://doi.org/10.1146/annurev-marine-031122-031137, 2023.
Yin, S., Hernández-Molina, F. J., Fan, W., and Li, J.: Efficient organic carbon burial by bottom currents in the ocean: A potential role in climate modulation, Geophys. Res. Lett., 51, e2024GL109444, https://doi.org/10.1029/2024GL109444, 2024.
Co-editor-in-chief
This paper discusses the carbon capture by poorly studied cold-water corals. These coral mounds represent a lesser known part of the carbon cycle and the outcomes of the study highlight the importance of these structures for natural carbon capture and storage at the sea floor.
This paper discusses the carbon capture by poorly studied cold-water corals. These coral mounds...
Short summary
Cold-water coral mounds are large structures on the seabed that are built by corals over thousands of years. They are regarded as carbonate sinks, with a potentially important role in the marine carbon cycle, but more quantitative studies are needed. Using sediment cores, we calculate the amount of carbon that has been stored in two mounds over the last 400 000 years. We provide the first numbers and show that up to 19 times more carbon is accumulated in mounds than on the common seafloor.
Cold-water coral mounds are large structures on the seabed that are built by corals over...
Altmetrics
Final-revised paper
Preprint