Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-4885-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4885-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A niche for diverse cable bacteria in continental margin sediments overlain by oxygen-deficient waters
Department of Microbiology, Radboud University, Nijmegen, the Netherlands
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Martijn Hermans
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Baltic Sea Centre, Stockholm University, Stockholm, Sweden
Niels A. G. M. van Helmond
Department of Microbiology, Radboud University, Nijmegen, the Netherlands
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Silke Severmann
Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, USA
James McManus
Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
Marit R. van Erk
Department of Microbiology, Radboud University, Nijmegen, the Netherlands
Sairah Malkin
Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, USA
Related authors
Astrid Hylen, Nils Ekeroth, Hannah Berk, Andy W. Dale, Mikhail Kononets, Wytze K. Lenstra, Aada Palo, Anders Tengberg, Sebastiaan J. van de Velde, Stefan Sommer, Caroline P. Slomp, and Per O. J. Hall
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-146, https://doi.org/10.5194/essd-2025-146, 2025
Preprint under review for ESSD
Short summary
Short summary
Phosphorus is an essential element for life and its cycling strongly impact primary production. Here, we present a dataset of sediment-water fluxes of dissolved inorganic phosphorus from the Baltic Sea, an area with a long history of eutrophication. The fluxes were measured in situ with three types of benthic chamber landers at 59 stations over 20 years. The data show clear spatial patterns and will be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Robin Klomp, Olga M. Żygadłowska, Mike S. M. Jetten, Véronique E. Oldham, Niels A. G. M. van Helmond, Caroline P. Slomp, and Wytze K. Lenstra
Biogeosciences, 22, 751–765, https://doi.org/10.5194/bg-22-751-2025, https://doi.org/10.5194/bg-22-751-2025, 2025
Short summary
Short summary
In marine sediments, dissolved Mn is present as either Mn(III) or Mn(II). We apply a reactive transport model to geochemical data for a seasonally anoxic and sulfidic coastal basin to determine the pathways of formation and removal of dissolved Mn(III) in the sediment. We demonstrate a critical role for reactions with Fe(II) and show evidence for substantial benthic release of dissolved Mn(III). Given the mobility of Mn(III), these findings have important implications for marine Mn cycling.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Martijn Hermans, Nils Risgaard-Petersen, Filip J. R. Meysman, and Caroline P. Slomp
Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, https://doi.org/10.5194/bg-17-5919-2020, 2020
Short summary
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
Julika Zinke, Joakim P. Hansen, Martijn Hermans, Alexis Fonseca, Sofia A. Wikström, Linda Kumblad, Emil Rydin, Marc Geibel, Matthew E. Salter, and Christoph Humborg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4446, https://doi.org/10.5194/egusphere-2025-4446, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study presents one of the few studies to simultaneously measure all three major greenhouse gases across multiple shallow coastal bays in the Baltic Sea. Our findings reveal that these bays are highly variable and significant sources of greenhouse gases, with fluxes strongly influenced by bay characteristics and seasonal variation. By linking concentrations to environmental drivers, our work provides novel insights into overlooked but important components of coastal greenhouse gas budgets.
Astrid Hylen, Nils Ekeroth, Hannah Berk, Andy W. Dale, Mikhail Kononets, Wytze K. Lenstra, Aada Palo, Anders Tengberg, Sebastiaan J. van de Velde, Stefan Sommer, Caroline P. Slomp, and Per O. J. Hall
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-146, https://doi.org/10.5194/essd-2025-146, 2025
Preprint under review for ESSD
Short summary
Short summary
Phosphorus is an essential element for life and its cycling strongly impact primary production. Here, we present a dataset of sediment-water fluxes of dissolved inorganic phosphorus from the Baltic Sea, an area with a long history of eutrophication. The fluxes were measured in situ with three types of benthic chamber landers at 59 stations over 20 years. The data show clear spatial patterns and will be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Robin Klomp, Olga M. Żygadłowska, Mike S. M. Jetten, Véronique E. Oldham, Niels A. G. M. van Helmond, Caroline P. Slomp, and Wytze K. Lenstra
Biogeosciences, 22, 751–765, https://doi.org/10.5194/bg-22-751-2025, https://doi.org/10.5194/bg-22-751-2025, 2025
Short summary
Short summary
In marine sediments, dissolved Mn is present as either Mn(III) or Mn(II). We apply a reactive transport model to geochemical data for a seasonally anoxic and sulfidic coastal basin to determine the pathways of formation and removal of dissolved Mn(III) in the sediment. We demonstrate a critical role for reactions with Fe(II) and show evidence for substantial benthic release of dissolved Mn(III). Given the mobility of Mn(III), these findings have important implications for marine Mn cycling.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Martijn Hermans, Nils Risgaard-Petersen, Filip J. R. Meysman, and Caroline P. Slomp
Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, https://doi.org/10.5194/bg-17-5919-2020, 2020
Short summary
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
Cited articles
Barbera, P., Kozlov, A. M., Czech, L., Morel, B., Darriba, D., Flouri., T., and Stamatakis, A.: EPA-ng: Massively Parallel Evolutionary Placement of Genetic Sequences, Syst. Biol., 68, 365–369, https://doi.org/10.1093/sysbio/syy054, 2019.
Berelson, W. M.: The flushing of two deep-sea basins, southern California borderland, Limnol. Oceanogr., 36, 1150–1166, https://doi.org/10.4319/lo.1991.36.6.1150, 1991.
Berelson, W. M., Hammond, D. E., and Johnson, K. S.: Benthic fluxes and the cycling of biogenic silica and carbon in two southern California borderland basins, Geochim. Cosmochim. Ac., 51, 1345–1363, https://doi.org/10.1016/0016-7037(87)90320-6, 1987.
Bernhard, J. M. and Buck, K. R.: Eukaryotes of the Cariaco, Soledad, and Santa Barbara Basins: protists and metazoans associated with deep-water marine sulfide-oxidizing microbial mats and their possible effects on the geologic record, in: Sulfur biogeochemistry – past and present, Geological Society of America Special Paper 379, edited by: Amend, J. P., Edwards, K. J., and Lyons, T. W., Geol. Soc. Am., 35–48, https://doi.org/10.1130/0-8137-2379-5.35, 2004.
Bjerg, J. J., Lustermans, J. J. M., Marshall, I. P. G., Mueller, A. J., Brokjær, S., Thorup, C. A., Tataru, P., Schmid, M., Wagner, M., Nielsen, L. P., and Schramm, A.: Cable bacteria with electric connection to oxygen attract flocks of diverse bacteria, Nat. Comm., 14, 1614, https://doi.org/10.1038/s41467-023-37272-8, 2023.
Bograd, S. J., Schwing, F. B., Castro, C. G., and Timothy, D. A.: Bottom water renewal in the Santa Barbara Basin, J. Geophys. Res.-Ocean., 107, 9-1–9-9, https://doi.org/10.1029/2001JC001291, 2002.
Bonné, R., Marshall, I. P. G., Bjerg, J. J., Marzocchi, U., Manca, J., Nielsen, L. P., and Aiyer, K.: Interaction of living cable bacteria with carbon electrodes in bioelectrochemical systems, Environ. Microbiol., 90, e00795-24, https://doi.org/10.1128/aem.00795-24, 2024.
Boschker, H. T. S., Cook, P. L. M., Polerecky, L., Eachambadi, R. T., Lozano, H., Hidalgo-Martinez, S., Khalenkow, D., Spampinato, V., Claes, N., Kundu, P., Wang, D., Bals, S., Sand, K. K., Cavezza, F., Hauffman, T., Bjerg, J. T., Skirtach, A. G., Kochan, K., McKee, M., Wood, B., Bedolla, D., Gianoncelli, A., Geerlings, N. M. J., van Gerven, N., Remaut, H., Geelhoed, J. S., Millan-Solsona, R., Fumagalli, L., Nielsen, L. P., Franquet, A., Manca, J. V., Gomila, G., and Meysman, F. J. R.: Efficient long-range conduction in cable bacteria through nickel protein wires, Nat. Commun., 12, 3996, https://doi.org/10.1038/s41467-021-24312-4, 2021.
Bruggmann, S., Severmann, S., and McManus, J.: Geochemical conditions regulating chromium preservation in marine sediments, Geochim. Cosmochim. Ac., 348, 239–257, https://doi.org/10.1016/j.gca.2023.03.003, 2023.
Bruggmann, S., McManus, J., Archer, C., Vance, D., and Severmann, S.: Nickel's behaviour in marine sediments under aerobic to anaerobic diagenetic conditions, Chem. Geol., 662, 122234, https://doi.org/10.1016/j.chemgeo.2024.122234, 2024.
Burdige, D. J.: Geochemistry of marine sediments, Princeton University Press, Princeton, NJ, USA, 624 pp., ISBN 9780691095066, 2006.
Burdorf, L. D. W., Tramper, A., Seitaj, D., Meire, L., Hidalgo-Martinez, S., Zetsche, E.-M., Boschker, H. T. S., and Meysman, F. J. R.: Long-distance electron transport occurs globally in marine sediments, Biogeosciences, 14, 683–701, https://doi.org/10.5194/bg-14-683-2017, 2017.
Burdorf, L. D. W., Malkin, S. Y., Bjerg, J. T., van Rijswijk, P., Criens, F., Tramper, A., and Meysman, F. J. R.:. The effect of oxygen availability on long-distance electron transport in marine sediments, Limnol. Oceanogr., 63, 1799–1816, https://doi.org/10.1002/lno.10809, 2018.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Method., 13, 581–583, https://https://doi.org/10.1038/nmeth.3869, 2016.
Callbeck, C. M., Canfield, D. E., Kuypers, M. M. M., Yilmaz, P., Lavik, G., Thamdrup, B., Schubert, C. J., and Bristow, L. A.: Sulfur cycling in oceanic oxygen minimum zones, Limnol. Oceanogr., 66, 2360–2392, https://doi.org/10.1002/lno.11759, 2021.
Chen, L., Little, S. H., Kreissig, K., Severmann, S., and McManus, J.: Isotopically light Cd in sediments underlying oxygen deficient zones, Front. Earth Sci., 9, 623720, https://doi.org/10.3389/feart.2021.623720, 2021.
Chong, L. S., Prokopenko, M. G., Berelson, W. M., Townsend-Small, A., and McManus, J.: Nitrogen cycling within suboxic and anoxic sediments from the continental margin of Western North America, Mar. Chem., 128/129, 13–25, https://doi.org/10.1016/j.marchem.2011.10.007, 2012.
Claff, S. R., Sullivan, L. A., Burton, E. D., and Bush, R. T.: A sequential extraction procedure for acid sulfate soils: partitioning of iron, Geoderma, 155, 224–230, https://doi.org/10.1016/j.geoderma.2009.12.002, 2010.
Cline, J. D.: Spectrophotometric determination of hydrogen sulfide in natural waters 1, Limnol. Oceanogr., 14, 454–458, https://doi.org/10.4319/lo.1969.14.3.0454, 1969.
Collins, L. E., Berelson, W., Hammond, D. E., Knapp, A., Schwartz, R., and Capone, D.: Particle fluxes in San Pedro Basin, California: A four-year record of sedimentation and physical forcing, Deep-Sea Res. Pt. I, 58, 898–914, https://doi.org/10.1016/j.dsr.2011.06.008, 2011.
Dam, A.-S., Marshall, I. P. G., Risgaard-Petersen, N., Burdorf, L. D. W., and Marzocchi, U.: Effect of salinity on cable bacteria species composition and diversity, Environ. Microbiol., 23, 2605–2616, https://doi.org/10.1111/1462-2920.15484, 2021.
Damgaard, L. R., Risgaard-Petersen, N., and Nielsen, L. P.: Electric potential microelectrode for studies of electrobiogeophysics, J. Geophys. Res.-Biogeo., 119, 1906–1917, https://doi.org/10.1002/2014JG002665, 2014.
D'Angelo, T., Goordial, J., Lindsay, M. R., McGonigle, J., Booker, A., Moser, D., Stepanauskus, R., and Orcutt, B. N.: Replicated life-history patterns and subsurface origins of the bacterial sister phyla Nitrospirota and Nitrospinota, ISME J., 17, 891–902, https://doi.org/10.1038/s41396-023-01397-x, 2023.
Daviray, M., Geslin, E., Risgaard-Petersen, N., Scholz, V. V., Fouet, M., and Metzger, E.: Potential impacts of cable bacteria activity on hard-shelled benthic foraminifera: implications for their interpretation as bioindicators or paleoproxies, Biogeosciences, 21, 911–928, https://doi.org/10.5194/bg-21-911-2024, 2024.
Eaton, A. D. and Franson, M. A. H. (Eds.): Standard Methods for the Examination of Water and Wastewater, Vol. 21, American Public Health Association, Washington, DC, USA, 1288 pp., ISBN 0875530478, 9780875530475, 2005.
Fernández-Gómez, B., Richter, M., Schüler, M., Pinhassi, J., Acinas, S. G., González, J. M., and Pedrós-Alió, C.: Ecology of marine Bacteroidetes: A comparative genomics approach, ISME J., 7, 1026–1037, https://doi.org/10.1038/ismej.2012.169, 2013.
Fonseca, A., Espinoza, C., Nielsen, L. P., Marshall, I. P. G., and Gallardo, V. A.: Bacterial community of sediments under the Eastern Boundary Current System shows high microdiversity and a latitudinal spatial pattern, Front. Microbiol., 13, 1016418, https://doi.org/10.3389/fmicb.2022.1016418, 2022.
Fossing, H., Gallardo, V. A., Jørgensen, B. B., Hüttel, M., Nielsen, L. P., Schulz, H., Canfield, D. E., Forster, S., Glud, R. N., Gundersen, J. K., Küver, J., Ramsing, N. B., Teske, A., Thamdrup, B., and Ulloa, O.: Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca, Nature, 374, 713–715, https://doi.org/10.1038/374713a0, 1995.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Geelhoed, J. S., Thorup, C. A., Bjerg, J. J., Schreiber, L., Nielsen, L. P., Schramm, A., Meysman, F. J. R., and Marshall, I. P. G.: Indications for a genetic basis for big bacteria and description of the giant cable bacterium Candidatus Electrothrix gigas sp. nov., Microbiology Spectrum, 11, e00538-23, https://doi.org/10.1128/spectrum.00538-23, 2023.
Hartnett, H. E. and Devol, A. H.: Role of a strong oxygen-deficient zone in the preservation and degradation of organic matter: a carbon budget for the continental margins of northwest Mexico and Washington State, Geochim. Cosmochim. Ac., 67, 247–264, https://doi.org/10.1016/S0016-7037(02)01076-1, 2003.
Hermans, M., Lenstra, W. K., Hidalgo-Martinez, S., van Helmond, N. A. G. M., Witbaard, R., Meysman, F. J. R., Gonzalez, S., and Slomp, C. P.: Abundance and Biogeochemical Impact of Cable Bacteria in Baltic Sea Sediments, Environ. Sci. Technol., 53, 7494–7503, https://doi.org/10.1021/acs.est.9b01665, 2019.
Hermans, M., Risgaard-Petersen, N., Meysman, F. J. R., and Slomp, C. P.: Biogeochemical impact of cable bacteria on coastal Black Sea sediment, Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, 2020.
Hoshino, T., Doi, H., Uramoto, G.-I., Wörmer, L., Adhikari, R. R., Xiao, N., Morono, Y., D'Hondt, S., Hinrichs, K.-U., and Inagaki, F.: Global diversity of microbial communities in marine sediment, P. Natl. Acad. Sci. USA, 117, 27587–27597, https://doi.org/10.1073/pnas.1919139117, 2020.
Jeroschewski, P., Steuckart, C., and Kühl, M.: An amperometric microsensor for the determination of H2S in aquatic environments, Anal. Chem., 68, 4351–4357, https://doi.org/10.1021/ac960091b, 1996.
Jørgensen, B. B.: Big Sulfur Bacteria, ISME J., 4, 1083–1084, https://https://doi.org/10.1038/ismej.2010.106, 2010.
Jørgensen, B. B.: Sulfur Biogeochemical Cycle of Marine Sediments, Geochem. Perspect., 10, 145–307, https://doi.org/10.7185/geochempersp.10.2, 2021.
Kallmeyer, J., Smith, D. C., Spivack, A. J., and D'Hondt, S.: New cell extraction procedure applied to deep subsurface sediments, Limnol. Oceanogr.-Meth., 6, 236–245, https://doi.org/10.4319/lom.2008.6.236, 2008.
Kim, C., Staver, L. W., Chen, X., Bulseco, A., Cornwell, J. C., and Malkin, S. Y.: Microbial community succession along a chronosequence in constructed salt marsh soils, Microb. Ecol., 85, 931–950, https://doi.org/10.1007/s00248-023-02189-8, 2023.
Kirkpatrick, J. B., Walsh, E. A., and D'Hondt, S.: Microbial selection and survival in subseafloor sediment, Front. Microbiol., 10, 956, https://doi.org/10.3389/fmicb.2019.00956, 2019.
Kjeldsen, K. U., Schreiber, L., Thorup, C. A., Boesen, T., Bjerg, J. T., Yang, T., Dueholm, M. S., Larsen, S., Risgaard-Petersen, N., Nierychlo, M., Schmid, M., Bøggild, A., van de Vossenberg, J., Geelhoed, J. S., Meysman, F. J. R., Wagner, M., Nielsen, P. H., Nielsen, L. P., and Schramm, A.: On the evolution and physiology of cable bacteria, P. Natl. Acad. Sci. USA, 116, 19116–19125, https://doi.org/10.1073/pnas.1903514116, 2019.
Klomp, R., Żygadłowska, O. M., Jetten, M. S. M., Oldham, V. E., van Helmond, N. A. G. M., Slomp, C. P., and Lenstra, W. K.: Dissolved Mn(III) is a key redox intermediate in sediments of a seasonally euxinic coastal basin, Biogeosciences, 22, 751–765, https://doi.org/10.5194/bg-22-751-2025, 2025.
Könneke, M., Bernhard, A. E., De la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A.: Isolation of an autotrophic ammonia-oxidizing marine archaeon, Nature, 437, 543–546, https://doi.org/10.1038/nature03911, 2005.
Kraal, P., Slomp, C. P., Forster, A., Kuypers, M. M. M., and Sluijs, A.: Pyrite oxidation during sample storage determines phosphorus fractionation in carbonate-poor anoxic sediments, Geochim. Cosmochim. Ac., 73, 3277–3290, https://doi.org/10.1016/j.gca.2009.02.026, 2009.
Kraal, P., Dijkstra, N., Behrends, T., and Slomp, C. P.: Phosphorus burial in sediments of the sulfidic deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis, Geochim. Cosmochim. Ac., 204, 140–158, https://doi.org/10.1016/j.gca.2017.01.042, 2017.
Levin, L.: Oxygen minimum zone benthos: Adaptation and community response to hypoxia, Oceanogr. Mar. Biol., 41, 1–45, 2003.
Ley, P., Geelhoed, J. S., Vasquez-Cardenas, D., and Meysman, F. J. R.: On the diversity, phylogeny and biogeography of cable bacteria, Front. Microbiol., 15, 1485281, https://doi.org/10.3389/fmicb.2024.1485281, 2024.
Li, C., Reimers, C. E., and Alleau, Y.: Inducing the attachment of cable bacteria on oxidizing electrodes, Biogeosciences, 17, 597–607, https://doi.org/10.5194/bg-17-597-2020, 2020.
Liau, P., Kim, C., Saxton, M. A., and Malkin, S. Y.: Microbial succession in a marine sediment: Inferring interspecific microbial interactions with marine cable bacteria, Environ. Microbiol., 24, 6348–6364, https://doi.org/10.1111/1462-2920.16230, 2022.
Liu, F., Wang, Z., Wu, B., Bjerg, J. T., Hu, W., Guo, X., Guo, J., Nielsen, L. P., Qiu, R., and Xu, M.: Cable bacteria extend the impacts of elevated dissolved oxygen into anoxic sediments, ISME J., 15, 1551–1563, https://doi.org/10.1038/s41396-020-00869-8, 2021.
Malkin, S. Y., Rao, A. M. F., Seitaj, D., Vasquez-Cardenas, D., Zetsche, E.-M., Hidalgo-Martinez, S., Boschker, H. T. S., and Meysman, F. J. R.: Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor, ISME J., 8, 1843–1854, https://doi.org/10.1038/ismej.2014.41, 2014.
Malkin, S. Y., Liau, P., Kim, C., Hantsoo, K. G., Gomes, M. L., and Song, B.: Contrasting controls on seasonal and spatial distribution of marine cable bacteria (Candidatus Electrothrix) and Beggiatoaceae in seasonally hypoxic Chesapeake Bay, Limnol. Oceanogr., 67, 1357–1373, https://doi.org/10.1002/lno.12087, 2022.
Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.-H.: Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions, Syst. Appl. Microbiol., 15, 593–600, https://doi.org/10.1016/S0723-2020(11)80121-9, 1992.
Marzocchi, U., Trojan, D., Larsen, S., Meyer, R. L., Revsbech, N. P., Schramm, A., Nielsen, L. P., and Risgaard-Petersen, N.: Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment, ISME J., 8, 1682–1690, https://doi.org/10.1038/ismej.2014.19, 2014.
Marzocchi, U., Bonaglia, S., van de Velde, S., Hall, P. O. J., Schramm, A., Risgaard-Petersen, N., and Meysman, F. J. R.: Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin, Environ. Microbiol., 20, 3031–3041, https://doi.org/10.1111/1462-2920.14349, 2018.
Marzocchi, U., Thorup, C., Dam, A.-S., Schramm, A., and Risgaard-Petersen, N.: Dissimilatory nitrate reduction by a freshwater cable bacterium, ISME J., 16, 50–57, https://doi.org/10.1038/s41396-021-01048-z, 2022.
McManus, J., Berelson, W. M., Severmann, S., Poulson, R. L., Hammond, D. E., Klinkhammer, G. P., and Holm, C.: Molybdenum and uranium geochemistry in continental margin sediments: paleoproxy potential, Geochim. Cosmochim. Ac., 70, 4643–4662, https://doi.org/10.1016/j.gca.2006.06.1564, 2006.
Meysman, F. J. R., Risgaard-Petersen, N., Malkin, S. Y., and Nielsen, L. P.: The geochemical fingerprint of microbial long-distance electron transport in the seafloor, Geochim. Cosmochim. Ac., 152, 122–142, https://doi.org/10.1016/j.gca.2014.12.014, 2015.
Millero, F. J., Plese, T., and Fernandez, M.: The dissociation of hydrogen sulfide in seawater 1, Limnol. Oceanogr., 33, 269–274, https://doi.org/10.4319/lo.1988.33.2.0269, 1988.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414, https://doi.org/10.1111/1462-2920.13023, 2015.
Peng, X., Yousavich, D. J., Bourbonnais, A., Wenzhöfer, F., Janssen, F., Treude, T., and Valentine, D. L.: The fate of fixed nitrogen in Santa Barbara Basin sediments during seasonal anoxia, Biogeosciences, 21, 3041–3052, https://doi.org/10.5194/bg-21-3041-2024, 2024.
Pernthaler, J., Glöckner, F.-O., Schönhuber, W., and Amann, R.: Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes, Method. Microbiol., 30, 207–226, https://doi.org/10.1016/S0580-9517(01)30046-6, 2001.
Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N., and Nielsen, L. P.: Filamentous bacteria transport electrons over centimetre distances, Nature, 491, 218–221, https://doi.org/10.1038/nature11586, 2012.
Plum-Jensen, L. E., Schramm, A., and Marshall, I. P. G.: First single-strain enrichments of Electrothrix cable bacteria, description of E. aestuarii sp. nov. and E. rattekaaiensis sp. nov., and proposal of a cable bacteria taxonomy following the rules of the SeqCode, System. Appl. Microbiol., 47, 126487, https://doi.org/10.1016/j.syapm.2024.126487, 2024.
Poulton, S. W. and Canfield, D. E.: Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates, Chem. Geol., 214, 209–221, https://doi.org/10.1016/j.chemgeo.2004.09.003, 2005.
Poulton, S. W. and Canfield, D. E.: Ferruginous conditions: a dominant feature of the ocean through Earth's history, Elements, 7, 107–112, https://doi.org/10.2113/gselements.7.2.107, 2011.
Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., and Glöckner, F. O.: SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA, Nucl. Acids Res., 35, 7188–7196, https://doi.org/10.1093/nar/gkm864, 2007.
Raiswell, R., Hardisty, D. S., Lyons, T. W., Canfield, D. E., Owens, J. D., Planavsky, N. J., Poulton, S. W., and Reinhard, C. T.: The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice, Am. J. Sci., 318, 491–526, https://doi.org/10.2475/05.2018.03, 2018.
Rambout, A.: FigTree v1.4.3, http://tree.bio.ed.ac.uk/software/figtree/ (last access: 11 November 2024), 2016.
Reimers, C. E., Li, C., Graw, M. F., Schrader, P. S., and Wolf, M.: The Identification of Cable Bacteria Attached to the Anode of a Benthic Microbial Fuel Cell: Evidence of Long Distance Extracellular Electron Transport to Electrodes, Front. Microbiol., 8, 2055, https://doi.org/10.3389/fmicb.2017.02055, 2017.
Risgaard-Petersen, N., Revil, A., Meister, P., and Nielsen, L. P.: Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment, Geochim. Cosmochim. Ac., 92, 1–13, https://doi.org/10.1016/j.gca.2012.05.036, 2012.
Risgaard-Petersen, N., Damgaard, L. R., Revil, A., and Nielsen, L. P.: Mapping electron sources and sinks in a marine biogeobattery, J. Geophys. Res.-Biogeo., 119, 1475–1486, https://doi.org/10.1002/2014JG002673, 2014.
Ruvalcaba Baroni, I., Palastanga, V., and Slomp, C. P.: Enhanced organic burial in sediments of oxygen minimum zones upon ocean deoxygenation, Front. Mar. Sci., 6, 839, https://doi.org/10.3389/fmars.2019.00839, 2020.
Salman, V., Amann, R., Shub, D. A., and Schulz-Vogt, H. N.: Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria, P. Natl. Acad. Sci. USA, 109, 4203–4208, https://doi.org/10.1073/pnas.1120192109, 2012.
Schauer, R., Risgaard-Petersen, N., Kjeldsen, K. U., Tataru Bjerg, J. J., Jørgensen, B. B., Schramm, A., and Nielsen, L. P.: Succession of cable bacteria and electric currents in marine sediment, ISME J., 8, 1314–1322, https://doi.org/10.1038/ismej.2013.239, 2014.
Schlitzer, R.: Ocean data view, https://odv.awi.de (last access: 11 November 2024), 2017.
Scholz, V. V., Martin, B. C., Meyer, R., Schramm, A., Fraser, M. W., Nielsen, L. P., Kendrick, G. A., Risgaard-Petersen, N., Burdorf, L. D. W., and Marshall, I. P. G.: Cable bacteria at oxygen-releasing roots of aquatic plants: A widespread and diverse plant–microbe association, New Phytol., 232, 2138–2151, https://doi.org/10.1111/nph.17415, 2021.
Schulz, H. N. and Jørgensen, B. B.: Big bacteria, Annu. Rev. Microbiol., 55, 105–137, https://doi.org/10.1146/annurev.micro.55.1.105, 2001.
Schulz, H. N., Brinkhoff, T., Ferdelman, T. G., Hernández Mariné, M., Teske, A., and Jørgensen, B. B.: Dense populations of a giant sulfur bacterium in Namibian shelf sediments, Science, 284, 493–495, https://doi.org/10.1126/science.284.5413.493, 1999.
Seibel, B. A., Luu, B. E., Tessier, S. N., Towanda, T., and Storey, K. B.: Metabolic suppression in the pelagic crab, Pleuroncodes planipes, in oxygen minimum zones, Comp. Biochem. Phys. B, 224, 88–97, https://doi.org/10.1016/j.cbpb.2017.12.017, 2018.
Seitaj, D., Schauer, R., Sulu-Gambari, F., Hidalgo-Martinez, S., Malkin, S. Y., Burdorf, L. D. W., Slomp, C. P., and Meysman, F. J. R.: Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins, P. Natl. Acad. Sci. USA, 112, 13278–13283, https://doi.org/10.1073/pnas.1510152112, 2015.
Sereika, M., Petriglieri, F., Jensen, T. B. N., Sannikov, A., Hoppe, M., Nielsen, P. H., Marshall, I. P. G., Schramm, A., and Albertsen, M.: Closed genomes uncover a saltwater species of Candidatus Electronema and shed new light on the boundary between marine and freshwater cable bacteria, ISME J., 17, 561–569, https://doi.org/10.1038/s41396-023-01372-6, 2023.
Silburn, B., Kröger, S., Parker, E. R., Sivyer, D. B., Hicks, N., Powell, C. F., Johnson, M., and Greenwood, N.: Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability, Biogeochemistry, 135, 69–88, https://doi.org/10.1007/s10533-017-0323-z, 2017.
Silverberg, N., Martínez, A., Aguíñiga, S., Carriquiry, J. D., Romero, N., Shumilin, E., and Cota, S.: Contrasts in sedimentation flux below the southern California Current in late 1996 and during the El Niño event of 1997–1998, Estuar. Coast. Shelf. S., 59, 575–587, https://doi.org/10.1016/j.ecss.2003.11.003, 2004.
Slomp, C., Hermans, M., van Helmond, N., van Erk, M., Severmann, S., McManus, J., and Malkin, S.: Data set “A niche for diverse cable bacteria in continental margin sediments overlain by oxygen-deficient waters” submitted for publication in Biogeosciences, Zenodo [data set], https://doi.org/10.5281/zenodo.14896362, 2025.
Solórzano, L.: Determination of ammonia in natural waters by the phenolhypochlorite method, Limnol. Oceanogr., 14, 799–801, https://doi.org/10.4319/lo.1969.14.5.0799, 1969.
Starnawski, P., Bataillon, T., Ettema, T. J. G., Jochum, L. M., Schreiber, L., Chen, X., Lever, M. A., Polz, M. F., Jørgensen, B. B., Schramm, A., and Kjeldsen, K. U.: Microbial community assembly and evolution in subseafloor sediment, P. Natl. Acad. Sci. USA, 114, 2940–2945, https://doi.org/10.1073/pnas.1614190114, 2017.
Stieglmeier, M., Klingl, A., Alves, R. J. E., Rittmann, S. K.-M. R., Melcher, M., Leisch, N., and Schleper, C.: Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota, Int. J. Syst. Evol. Micr., 64, 2738–2752, https://doi.org/10.1099/ijs.0.063172-0, 2014.
Stott, L. D., Berelson, W., Douglas, R., and Gorsline, D.: Increased dissolved oxygen in Pacific intermediate waters due to lower rates of carbon oxidation in sediments, Nature, 407, 367–370, https://doi.org/10.1038/35030084, 2000.
Sulu-Gambari, F., Seitaj, D., Meysman, F. J. R., Schauer, R., Polerecky, L., and Slomp, C. P.: Cable bacteria control iron–phosphorus dynamics in sediments of a coastal hypoxic basin, Environ. Sci. Technol., 50, 1227–1233, https://doi.org/10.1021/acs.est.5b04369, 2016.
Tan, S., Liu, J., Fang, Y., Hedlund, B. P, Lian, Z.-H., Huang, L.-Y., Li, J.-T., Huang, L.-N., Li, W.-J., Jiang, H.-C., Dong, H.-L., and Shu, W.-S.: Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics, ISME J., 13, 2044–2057, https://doi.org/10.1038/s41396-019-0415-y, 2019.
Tems, C. E. and Tappa, E.: Regional Fluctuations in the Eastern Tropical North Pacific Oxygen Minimum Zone during the Late Holocene, Oceans, 5, 352–367, https://doi.org/10.3390/oceans5020021, 2024.
Thamdrup, B., Fossing, H., and Jørgensen, B. B.: Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark, Geochim. Cosmochim. Ac., 58, 5115–5129, https://doi.org/10.1016/0016-7037(94)90298-4, 1994.
Thunell, R. C.: Particle fluxes in a coastal upwelling zone: sediment trap results from Santa Barbara Basin, California, Deep-Sea Res. Pt. II, 45, 1863–1884, https://doi.org/10.1016/S0967-0645(98)80020-9, 1998.
Trojan, D., Schreiber, L., Bjerg, J. T., Bøggild, A., Yang, T., Kjeldsen, K. U., and Schramm, A.: A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema, Syst. Appl. Microbiol., 39, 297–306, https://doi.org/10.1016/j.syapm.2016.05.006, 2016.
van de Velde, S., Lesven, L., Burdorf, L. D. W., Hidalgo-Martinez, S., Geelhoed, J. S., van Rijswijk, P., Gao, Y., and Meysman, F. J. R.: The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: A field study, Geochim. Cosmochim. Ac., 194, 211–232, https://doi.org/10.1016/j.gca.2016.08.038, 2016.
van Dijk, J. R., Geelhoed, J. S., Ley, P., Hidalgo-Martinez, S., Portillo-Estrada, M., Verbruggen, E., and Meysman, F. J. R.: Cable bacteria colonise new sediment environments through water column dispersal, Environ. Microbiol., 26, e16694, https://doi.org/10.1111/1462-2920.16694, 2024.
van Geen, A., Zheng, Y., Bernhard, J. M., Cannariato, K. G., Carriquiry, J., Dean, W. E., Eakins, B. W., Ortiz, J. D., and Pike, J.: On the preservation of laminated sediments along the western margin of North America, Paleoceanography, 18, 1098, https://doi.org/10.1029/2003PA000911, 2003.
van Helmond, N. A. G. M., Jilbert, T., Slomp, C. P.: Hypoxia in the Holocene Baltic Sea: comparing modern versus past intervals using sedimentary trace metals, Chem. Geol., 493, 478–490, https://doi.org/10.1016/j.chemgeo.2018.06.028, 2018.
van Santvoort, P. J. M., De Lange, G. J., Thomson, J., Colley, S., Meysman, F. J. R., and Slomp, C. P.: Oxidation and origin of organic matter in surficial Eastern Mediterranean hemipelagic sediments, Aquat. Geochem., 8, 153–175, https://doi.org/10.1023/A:1024271706896, 2002.
Vasquez-Cardenas, D., van de Vossenberg, J., Polerecky, L., Malkin, S. Y., Schauer, R., Hidalgo-Martinez, S., Confurius, V., Middelburg, J. J., Meysman, F. J. R., and Boschker, H. T. S.: Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments, ISME J., 9, 1966–1978, https://doi.org/10.1038/ismej.2015.10, 2015.
Wasmund, K., Mußmann, M., and Loy, A.: The life sulfuric: microbial ecology of sulfur cycling in marine sediments, Env. Microbiol. Rep., 9, 323–344, https://doi.org/10.1111/1758-2229.12538, 2017.
Yousavich, D. J., Robinson, D.-M., Peng, X., Krause, S. J. E., Wenzhöfer, F., Janssen, F., Liu, N., Tarn, J., Kinnaman, F., Valentine, D. L., and Treude, T.: Marine anoxia initiates giant sulfur-oxidizing bacterial mat proliferation and associated changes in benthic nitrogen, sulfur, and iron cycling in the Santa Barbara Basin, California Borderland, Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024, 2024.
Short summary
Cable bacteria couple the oxidation of sulfide at depth in sediments with the reduction in oxygen, nitrate, or nitrite near the sediment surface, thereby preventing the release of toxic hydrogen sulfide to the overlying water. We show evidence for a diversity of cable bacteria in sediments from hypoxic and anoxic basins along the continental margin of California and Mexico. Cable bacteria activity in this setting is likely to be periodic and dependent on the supply of organic matter and/or oxygen.
Cable bacteria couple the oxidation of sulfide at depth in sediments with the reduction in...
Altmetrics
Final-revised paper
Preprint