Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-4923-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4923-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multidecadal trends in CO2 evasion and aquatic metabolism in a large temperate river
INRAE, UR RiverLy, 5 Rue de la Doua, 69100 Villeurbanne, France
Gwenaël Abril
Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, Muséum National d'Histoire Naturelle, CNRS, IRD, SU, UCN, UA, Paris, France
Programa de Geoquímica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
Jacob S. Diamond
INRAE, UR RiverLy, 5 Rue de la Doua, 69100 Villeurbanne, France
Dipartimento di Scienze Ambientali, Informatica e Statistica, University of Venice Ca' Foscari, Via Torino 155, 30172 Venezia Mestre, Italy
Raphaël Lamouroux
EDF – Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, France
Cécile Martinet
EDF – Division Technique Générale, Electricité de France, Grenoble, France
Florentina Moatar
INRAE, UR RiverLy, 5 Rue de la Doua, 69100 Villeurbanne, France
Related authors
No articles found.
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data, 17, 3411–3430, https://doi.org/10.5194/essd-17-3411-2025, https://doi.org/10.5194/essd-17-3411-2025, 2025
Short summary
Short summary
Many waterbodies undergo nutrient decline, called oligotrophication, globally, but a comprehensive dataset to understand ecosystem responses is lacking. The OLIGOTREND database comprises multi-decadal chlorophyll a and nutrient time series from rivers, lakes, and estuaries with 4.3 million observations from 1894 unique measurement locations. The database provides empirical evidence for oligotrophication responses with a spatial and temporal coverage that exceeds previous efforts.
Jérémy Mayen, Pierre Polsenaere, Aurore Regaudie de Gioux, Jonathan Deborde, Karine Collin, Yoann Le Merrer, Élodie Foucault, Vincent Ouisse, Laurent André, Marie Arnaud, Pierre Kostyrka, Éric Lamaud, Gwenaël Abril, and Philippe Souchu
EGUsphere, https://doi.org/10.5194/egusphere-2025-335, https://doi.org/10.5194/egusphere-2025-335, 2025
Short summary
Short summary
In a salt marsh, we performed seasonal 24-h cycles to look for aquatic metabolism influence on water carbon dynamics and net ecosystem CO2 exchanges (NEE). From high to low tide in winter, marsh anaerobic respiration induced the highest levels of dissolved inorganic carbon and alkalinity. On the contrary, in spring and summer, marsh primary production led to CO2-depleted water exportations downstream. Aquatic heterotrophy at high tide can influence NEE during the highest immersion levels only.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022, https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021, https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Short summary
This study investigates the drivers of spatial variations in stream water quality in poorly studied headwater catchments and includes multiple elements involved in major water quality issues, such as eutrophication. We used a regional public dataset of monthly stream water concentrations monitored for 10 years over 185 agricultural catchments. We found a spatial and seasonal opposition between carbon and nitrogen concentrations, while phosphorus concentrations showed another spatial pattern.
Cited articles
Abril, G. and Borges, A. V.: Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?, Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, 2019.
Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., and Borges, A. V.: Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters, Biogeosciences, 12, 67–78, https://doi.org/10.5194/bg-12-67-2015, 2015.
Aho, K. S., Hosen, J. D., Logozzo, L. A., McGillis, W. R., and Raymond, P. A.: Highest rates of gross primary productivity maintained despite CO 2 depletion in a temperate river network, Limnol. Oceanogr. Lett., 6, 200–206, https://doi.org/10.1002/lol2.10195, 2021.
Amaral, J., Suhett, A., Melo, S., and Farjalla, V.: Seasonal variation and interaction of photodegradation and microbial metabolism of DOC in black water Amazonian ecosystems, Aquat. Microb. Ecol., 70, 157–168, https://doi.org/10.3354/ame01651, 2013.
Appling, A. P., Hall, R. O., Yackulic, C. B., and Arroita, M.: Overcoming Equifinality: Leveraging Long Time Series for Stream Metabolism Estimation, J. Geophys. Res.-Biogeo., 123, 624–645, https://doi.org/10.1002/2017JG004140, 2018.
Battin, T. J., Lauerwald, R., Bernhardt, E. S., Bertuzzo, E., Gener, L. G., Hall, R. O., Hotchkiss, E. R., Maavara, T., Pavelsky, T. M., Ran, L., Raymond, P., Rosentreter, J. A., and Regnier, P.: River ecosystem metabolism and carbon biogeochemistry in a changing world, Nature, 613, 449–459, https://doi.org/10.1038/s41586-022-05500-8, 2023.
Baulon, L., Allier, D., Massei, N., Bessiere, H., Fournier, M., and Bault, V.: Influence of low-frequency variability on groundwater level trends, J. Hydrol., 606, 127436, https://doi.org/10.1016/j.jhydrol.2022.127436, 2022.
Begum, M. S., Jang, I., Lee, J.-M., Oh, H. B., Jin, H., and Park, J.-H.: Synergistic effects of urban tributary mixing on dissolved organic matter biodegradation in an impounded river system, Sci. Total Environ., 676, 105–119, https://doi.org/10.1016/j.scitotenv.2019.04.123, 2019.
Bernal, S., Cohen, M. J., Ledesma, J. L. J., Kirk, L., Martí, E., and Lupon, A.: Stream metabolism sources a large fraction of carbon dioxide to the atmosphere in two hydrologically contrasting headwater streams, Limnol. Oceanogr., 67, 2621–2634, https://doi.org/10.1002/lno.12226, 2022.
Binet, S., Charlier, J.-B., Jozja, N., Défarge, C., and Moquet, J.-S.: Evidence of long term biogeochemical interactions in carbonate weathering: the role of planktonic microorganisms and riverine bivalves in a large fluviokarst system, Sci. Total Environ., 842, 156823, https://doi.org/10.1016/j.scitotenv.2022.156823, 2022.
Blaszczak, J. R., Delesantro, J. M., Urban, D. L., Doyle, M. W., and Bernhardt, E. S.: Scoured or suffocated: Urban stream ecosystems oscillate between hydrologic and dissolved oxygen extremes, Limnol. Oceanogr., 64, 877–894, 2019.
Bogard, M. J. and Del Giorgio, P. A.: The role of metabolism in modulating CO2 fluxes in boreal lakes, Global Biogeochem. Cycles, 30, 1509–1525, https://doi.org/10.1002/2016GB005463, 2016.
Butman, D. and Raymond, P. A.: Significant efflux of carbon dioxide from streams and rivers in the united states, Nat. Geosci., 4, 839–842, https://doi.org/10.1038/ngeo1294, 2011.
Camenen, B., Grabowski, R. C., Latapie, A., Paquier, A., Solari, L., and Rodrigues, S.: On the estimation of the bed-material transport and budget along a river segment: application to the Middle Loire River, France, Aquat. Sci., 78, 71–81, https://doi.org/10.1007/s00027-015-0442-3, 2016.
Cole, J. J., Cole, J. J., Caraco, N. F., and Caraco, N. F.: Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism, Mar. Freshwater Res., 52, 101, https://doi.org/10.1071/MF00084, 2001.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 10, 171–184, https://doi.org/10.1007/s10021-006-9013-8, 2007.
Coynel, A., Etcheber, H., Abril, G., Maneux, E., Dumas, J., and Hurtrez, J.-E.: Contribution of small mountainous rivers to particulate organic carbon input in the bay of biscay, Biogeochemistry, 74, 151–171, 2005.
Deirmendjian, L. and Abril, G.: Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed, J. Hydrol., 558, 129–143, https://doi.org/10.1016/j.jhydrol.2018.01.003, 2018.
Diamond, J. S., Bernal, S., Boukra, A., Cohen, M. J., Lewis, D., Masson, M., Moatar, F., and Pinay, G.: Stream network variation in dissolved oxygen: Metabolism proxies and biogeochemical controls, Ecological Indicators, 131, 108233, https://doi.org/10.1016/j.ecolind.2021.108233, 2021.
Diamond, J. S., Moatar, F., Cohen, M. J., Poirel, A., Martinet, C., Maire, A., and Pinay, G.: Metabolic regime shifts and ecosystem state changes are decoupled in a large river, Limnol. Oceanogr., 67, S54–S70, https://doi.org/10.1002/lno.11789, 2022.
Diamond, J. S., Truong, A. N., Abril, G., Bertuzzo, E., Chanudet, V., Lamouroux, R., and Moatar, F.: Inorganic carbon dynamics and their relation to autotrophic community regime shift over three decades in a large, alkaline river, Limnol. Oceanogr., 70, 1122–1136, https://doi.org/10.1002/lno.70016, 2025.
Dodds, W. K. and Smith, V. H.: Nitrogen, phosphorus, and eutrophication in streams, Inland Waters, 6, 155–164, https://doi.org/10.5268/IW-6.2.909, 2016.
Duvert, C., Butman, D. E., Marx, A., Ribolzi, O., and Hutley, L. B.: CO2 evasion along streams driven by groundwater inputs and geomorphic controls, Nat. Geosci., 11, 813–818, https://doi.org/10.1038/s41561-018-0245-y, 2018.
Etcheber, H., Taillez, A., Abril, G., Garnier, J., Servais, P., Moatar, F., and Commarieu, M.-V.: Particulate organic carbon in the estuarine turbidity maxima of the gironde, loire and seine estuaries: origin and lability, Hydrobiologia, 588, 245–259, https://doi.org/10.1007/s10750-007-0667-9, 2007.
Floury, M., Delattre, C., Ormerod, S. J., and Souchon, Y.: Global versus local change effects on a large european river, Sci. Total Environ., 441, 220–229, https://doi.org/10.1016/j.scitotenv.2012.09.051, 2012.
He, H., Wang, Y., Liu, Z., Bao, Q., Wei, Y., Chen, C., and Sun, H.: Lake metabolic processes and their effects on the carbonate weathering CO2 sink: insights from diel variations in the hydrochemistry of a typical karst lake in SW china, Water Res., 222, 118907, https://doi.org/10.1016/j.watres.2022.118907, 2022.
Hotchkiss, E. R., Hall Jr., R. O., Sponseller, R. A., Butman, D., Klaminder, J., Laudon, H., Rosvall, M., and Karlsson, J.: Sources of and processes controlling CO2 emissions change with the size of streams and rivers, Nat. Geosci., 8, 696–699, https://doi.org/10.1038/ngeo2507, 2015.
Hub'Eau – Eaufrance: Groundwater quality data, BRGM [data set], https://hubeau.eaufrance.fr/page/api-qualite-nappes (last access: 15 April 2024), 2024.
Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D.: PyCO2SYS v1.8: marine carbonate system calculations in Python, Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, 2022.
Hussain, Md. and Mahmud, I.: pyMannKendall: a python package for non parametric mann kendall family of trend tests., J. Open Source Softw., 4, 1556, https://doi.org/10.21105/joss.01556, 2019.
Hydro Eaufrance: Daily discharge data, SCHAPI [data set], https://www.hydro.eaufrance.fr/ (last access: 15 April 2024), 2024.
Ibáñez, C., Caiola, N., Barquín, J., Belmar, O., Benito, X., Casals, F., Fennessy, S., Hughes, J., Palmer, M., Peñuelas, J., Romero, E., Sardans, J., and Williams, M.: Ecosystem-level effects of re-oligotrophication and N:P imbalances in rivers and estuaries on a global scale, Global Change Biology, 29, 1248–1266, https://doi.org/10.1111/gcb.16520, 2022.
Janssen, P., Chevalier, R., Chantereau, M., Dupré, R., Evette, A., Hémeray, D., Mårell, A., Martin, H., Rodrigues, S., Villar, M., and Greulich, S.: Can vegetation clearing operations and reprofiling of bars be considered as an ecological restoration measure? Lessons from a 10-year vegetation monitoring program (loire river, france), Restor. Ecol., 31, e13704, https://doi.org/10.1111/rec.13704, 2023.
Jones, A. S., Jones, T. L., and Horsburgh, J. S.: Toward automating post processing of aquatic sensor data, Environ. Modell. Softw., 151, 105364, https://doi.org/10.1016/j.envsoft.2022.105364, 2022.
Jones, J. B., Stanley, E. H., and Mulholland, P. J.: Long-term decline in carbon dioxide supersaturation in rivers across the contiguous united states, Geophys. Res. Lett., 30, 2003GL017056, https://doi.org/10.1029/2003GL017056, 2003.
Kim, D., Lim, J.-H., Chun, Y., Nayna, O. K., Begum, M. S., and Park, J.-H.: Phytoplankton nutrient use and CO2 dynamics responding to long-term changes in riverine N and P availability, Water Res., 203, 117510, https://doi.org/10.1016/j.watres.2021.117510, 2021.
Kirk, L. and Cohen, M. J.: River corridor sources dominate CO2 emissions from a lowland river network, J. Geophys. Res.-Biogeo., 128, e2022JG006954, https://doi.org/10.1029/2022JG006954, 2023.
Koehler, B., Landelius, T., Weyhenmeyer, G. A., Machida, N., and Tranvik, L. J.: Sunlight-induced carbon dioxide emissions from inland waters, Global Biogeochem. Cycles, 28, 696–711, https://doi.org/10.1002/2014GB004850, 2014.
Lan, X., Tans, P., and Thoning, K.: Trends in globally-averaged CO2 determined from NOAA Global Monitoring Laboratory measurements, Version 2023-07, Global Monitoring Laboratory [data set], https://doi.org/10.15138/9N0H-ZH07, 2023.
Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D. E., Allen, G. H., Lin, P., Pan, M., Yamazaki, D., Brinkerhoff, C., Gleason, C., Xia, X., and Raymond, P. A.: The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers, P. Natl. Acad. Sci. USA, 119, e2106322119, https://doi.org/10.1073/pnas.2106322119, 2022.
Lynch, J. K., Beatty, C. M., Seidel, M. P., Jungst, L. J., and DeGrandpre, M. D.: Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution pCO2 measurements, J. Geophys. Res.-Biogeo., 115, 2009JG001132, https://doi.org/10.1029/2009JG001132, 2010.
Marescaux, A., Thieu, V., Borges, A. V., and Garnier, J.: Seasonal and spatial variability of the partial pressure of carbon dioxide in the human-impacted seine river in france, Sci. Rep., 8, 13961, https://doi.org/10.1038/s41598-018-32332-2, 2018.
Météo-France: Daily global radiation data, Météo-France [data set], https://donneespubliques.meteofrance.fr/ (last access: 15 April 2024), 2024.
Millero, F. J.: The thermodynamics of the carbonate system in seawater, Geochim. Cosmochim. Ac., 43, 1651–1661, https://doi.org/10.1016/0016-7037(79)90184-4, 1979.
Minaudo, C., Meybeck, M., Moatar, F., Gassama, N., and Curie, F.: Eutrophication mitigation in rivers: 30 years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River (1980–2012), Biogeosciences, 12, 2549–2563, https://doi.org/10.5194/bg-12-2549-2015, 2015.
Minaudo, C., Moatar, F., Coynel, A., Etcheber, H., Gassama, N., and Curie, F.: Using recent high-frequency surveys to reconstitute 35 years of organic carbon variations in a eutrophic lowland river, Environ. Monit. Assess., 188, 1–17, https://doi.org/10.1007/s10661-015-5054-9, 2016.
Moatar, F. and Meybeck, M.: Compared performances of different algorithms for estimating annual nutrient loads discharged by the eutrophic River Loire, Hydrol. Process., 19, 429–444, https://doi.org/10.1002/hyp.5541, 2005.
Moatar, F., Fessant, F., and Poirel, A.: pH modelling by neural networks. Application of control and validation data series in the middle loire river, Ecol. Modell., 120, 141–156, https://doi.org/10.1016/S0304-3800(99)00098-8, 1999.
Moatar, F., Miquel, J., and Poirel, A.: A quality-control method for physical and chemical monitoring data. Application to dissolved oxygen levels in the river loire (france), J. Hydrol., 252, 25–36, https://doi.org/10.1016/S0022-1694(01)00439-5, 2001.
Moatar, F., Descy, J.-P., Rodrigues, S., Souchon, Y., Floury, M., Grosbois, C., Minaudo, C., Leitao, M., Wantzen, K. M., and Bertrand, F.: Chapter 7 – the loire river basin, in: Rivers of Europe (Second Edition), edited by: Tockner, K., Zarfl, C., and Robinson, C. T., Elsevier, 245–271, https://doi.org/10.1016/B978-0-08-102612-0.00007-9, 2022.
Naiades – Eaufrance: Surface water quality data, Office International de l'Eau [data set], http://www.naiades.eaufrance.fr (last access: 15 April 2024), 2024.
Odum, H. T.: Primary Production in Flowing Waters, Limnol. Oceanogr., 1, 102–117, https://doi.org/10.4319/lo.1956.1.2.0102, 1956.
Raymond, P. A., Caraco, N. F., and Cole, J. J.: Carbon dioxide concentration and atmospheric flux in the hudson river, Estuaries, 20, 381, https://doi.org/10.2307/1352351, 1997.
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E., McDowell, W. H., and Newbold, D.: Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers, Limnol. Oceanogr. Fluids Environ., 2, 41–53, https://doi.org/10.1215/21573689-1597669, 2012.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503, 355–359, https://doi.org/10.1038/nature12760, 2013.
Reed, A. P., Stets, E. G., Murphy, S. F., and Mullins, E. A.: Aquatic-terrestrial linkages control metabolism and carbon dynamics in a mid-sized, urban stream influenced by snowmelt, J. Geophys. Res.-Biogeo., 126, e2021JG006296, https://doi.org/10.1029/2021JG006296, 2021.
Rocher-Ros, G., Sponseller, R. A., Bergström, A., Myrstener, M., and Giesler, R.: Stream metabolism controls diel patterns and evasion of CO 2 in arctic streams, Global Change Biol., 26, 1400–1413, https://doi.org/10.1111/gcb.14895, 2020.
Rocher-Ros, G., Harms, T. K., Sponseller, R. A., Väisänen, M., Mörth, C.-M., and Giesler, R.: Metabolism overrides photo-oxidation in CO2 dynamics of Arctic permafrost streams, Limnol. Oceanogr., 66, S169–S181, https://doi.org/10.1002/lno.11564, 2021.
Seabold, S. and Perktold, J.: Statsmodels: econometric and statistical modeling with python, Python in Science Conference, Austin, Texas, 92–96, https://doi.org/10.25080/Majora-92bf1922-011, 2010.
Solano, V., Duvert, C., Birkel, C., Maher, D. T., García, E. A., and Hutley, L. B.: Stream respiration exceeds CO2 evasion in a low-energy, oligotrophic tropical stream, Limnol. Oceanogr., 68, 1132–1146, https://doi.org/10.1002/lno.12334, 2023.
Thiéry, D.: ÉROS: a semi-global hydrological modelling application for a catchment area divided into sub-basins, https://www.brgm.fr/en/software/eros-semi-global-hydrological-modelling-application-catchment-area-divided-sub-basins (last access: 15 April 2024), 2018.
Trentman, M. T., Hall, R. O., and Valett, H. M.: Exploring the mismatch between the theory and application of photosynthetic quotients in aquatic ecosystems, Limnol. Oceanogr. Lett., 8, 565–579, https://doi.org/10.1002/lol2.10326, 2023.
Truong, C., Oudre, L., and Vayatis, N.: Selective review of offline change point detection methods, Signal Process., 167, 107299, https://doi.org/10.1016/j.sigpro.2019.107299, 2020.
Tsypin, M. and Macpherson, G. L.: The effect of precipitation events on inorganic carbon in soil and shallow groundwater, konza prairie LTER site, NE kansas, USA, Appl. Geochem., 27, 2356–2369, https://doi.org/10.1016/j.apgeochem.2012.07.008, 2012.
Van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., and Kabat, P.: Global river discharge and water temperature under climate change, Global Environ. Change, 23, 450–464, https://doi.org/10.1016/j.gloenvcha.2012.11.002, 2013.
Vihermaa, L. E., Waldron, S., Garnett, M. H., and Newton, J.: Old carbon contributes to aquatic emissions of carbon dioxide in the Amazon, Biogeosciences, 11, 3635–3645, https://doi.org/10.5194/bg-11-3635-2014, 2014.
Wallin, M. B., Audet, J., Peacock, M., Sahlée, E., and Winterdahl, M.: Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production, Biogeosciences, 17, 2487–2498, https://doi.org/10.5194/bg-17-2487-2020, 2020.
Young, F. L., Colman, B. P., Carter, A. M., Fiejó De Lima, R., Shangguan, Q., Payn, R. A., and DeGrandpre, M. D.: Variability and Controls of pCO2 and Air-Water CO2 Fluxes in a Temperate River, JGR Biogeosciences, 130, e2024JG008434, https://doi.org/10.1029/2024JG008434, 2025.
Zhang, T., Li, J., Pu, J., Martin, J. B., Khadka, M. B., Wu, F., Li, L., Jiang, F., Huang, S., and Yuan, D.: River sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China, Sci. Total Environ., 609, 92–101, https://doi.org/10.1016/j.scitotenv.2017.07.143, 2017.
Co-editor-in-chief
This paper reports long-term metabolic shifts of a once eutrophic river based on a 32-year, high-frequency dataset from the Loire River, France. By comparing CO2 flux estimations from water chemistry data and metabolic modeling based on high-frequency oxygen measurements, the study demonstrates a metabolic shift from a eutrophic, phytoplankton-dominated regime to an oligotrophic, macrophyte-dominated regime around 2005. Building on a novel "trophlux states" framework, the analysis of this rare long-term dataset illustrates that riverine CO2 flux and its sources are dynamic within and across years, challenging the conventional understanding of simple relationships between riverine trophic status and carbon emissions.
This paper reports long-term metabolic shifts of a once eutrophic river based on a 32-year,...
Short summary
To understand the role of rivers in the global carbon cycle, this 32-year study tracked carbon dioxide in France's Loire River. We found emissions decreased over the long term, despite varying more than tenfold from year to year. While the river ecosystem shifted from algae to plant dominance, this decrease in emissions was primarily driven by reduced groundwater inputs. This shows that catchment-scale hydrology can be more important than in-river biology for a river's carbon footprint.
To understand the role of rivers in the global carbon cycle, this 32-year study tracked carbon...
Altmetrics
Final-revised paper
Preprint